【題目】如圖,四棱錐中,底面
是矩形,面
底面
,且
是邊長為
的等邊三角形,
在
上,且
面
.
(1)求證: 是
的中點;
(2)在上是否存在點
,使二面角
為直角?若存在,求出
的值;若不存在,說明理由.
【答案】(1) 見解析;(2) .
【解析】試題分析:(1)連交
于
可得
是
中點,再根據
面
可得
進而根據中位線定理可得結果;(2)取
中點
,由(1)知
兩兩垂直. 以
為原點,
所在直線分別為
軸,
軸,
軸建立空間直角坐標系,求出面
的一個法向量
,用
表示面
的一個法向量
,由
可得結果.
試題解析:(1)證明:連交
于
,連
是矩形,
是
中點.又
面
,且
是面
與面
的交線,
是
的中點.
(2)取中點
,由(1)知
兩兩垂直. 以
為原點,
所在直線分別為
軸,
軸,
軸建立空間直角坐標系(如圖),則各點坐標為
.
設存在滿足要求,且
,則由
得:
,面
的一個法向量為
,面
的一個法向量為
,由
,得
,解得
,故存在
,使二面角
為直角,此時
.
科目:高中數學 來源: 題型:
【題目】已知小張每次射擊命中十環的概率都為40%,現采用隨機模擬的方法估計小張三次射擊恰有兩次命中十環的概率,先由計算器產生0到9之間取整數值的隨機數,指定2,4,6,8表示命中十環,0,1,3,5,7,9表示未命中十環,再以每三個隨機數為一組,代表三次射擊的結果,經隨機模擬產生了如下20組隨機數:
321 421 292 925 274 632 800 478 598 663 531 297 396
021 506 318 230 113 507 965
據此估計,小張三次射擊恰有兩次命中十環的概率為()
A. 0.25B. 0.30C. 0.35D. 0.40
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《九章算術》里有一段敘述:今有良馬與駑馬發長安至齊,齊去長安一千一百二十五里,良馬初日行一百零三里,日增十三里;駑馬初日行九十七里,日減半里;良馬先至齊,復還迎駑馬,二馬相逢.根據該問題設計程序框圖如下,若輸入,則輸出
的值是( )
A. 8 B. 9 C. 12 D. 16
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列四個命題中,其中錯誤的個數是()
①經過球面上任意兩點,可以作且只可以作一個大圓;
②經過球直徑的三等分點,作垂直于該直徑的兩個平面,則這兩個平面把球面分成三部分的面積相等;
③球的面積是它大圓面積的四倍;
④球面上兩點的球面距離,是這兩點所在截面圓上,以這兩點為端點的劣弧的長.
A. 0B. 1C. 2D. 3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】時下,租車自駕游已經比較流行了.某租車點的收費標準為:不超過天收費
元,超過
天的部分每天收費
元(不足
天按
天計算).甲、乙兩人要到該租車點租車自駕到某景區游覽,他們不超過
天還車的概率分別為
和
,
天以上且不超過
天還車的概率分別為
和
,兩人租車都不會超過
天.
(1)求甲所付租車費比乙多的概率;
(2)設甲、乙兩人所付的租車費之和為隨機變量,求
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】f(x)的定義域為(0,+∞),且對一切x>0,y>0都有f=f(x)-f(y),當x>1時,有f(x)>0。
(1)求f(1)的值;
(2)判斷f(x)的單調性并證明;
(3)若f(6)=1,解不等式f(x+3)-f<2;
(4)若f(4)=2,求f(x)在[1,16]上的值域。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義在R上的函數f(x)=2x-.
(1)若f(x)=,求x的值;
(2)若2tf(2t)+mf(t)≥0對于t∈[1,2]恒成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的焦點曲線
的一個焦點,
為坐標原點,點
為拋物線
上任意一點,過點
作
軸的平行線交拋物線的準線于
,直線
交拋物線于點
.
(Ⅰ)求拋物線的方程;
(Ⅱ)求證:直線過定點
,并求出此定點的坐標.
【答案】(I);(II)證明見解析.
【解析】試題分析:(Ⅰ)將曲線化為標準方程,可求得
的焦點坐標分別為
,可得
,所以
,即拋物線的方程為
;(Ⅱ)結合(Ⅰ),可設
,得
,從而直線
的方程為
,聯立直線與拋物線方程得
,解得
,直線
的方程為
,整理得
的方程為
,此時直線恒過定點
.
試題解析:(Ⅰ)由曲線,化為標準方程可得
, 所以曲線
是焦點在
軸上的雙曲線,其中
,故
,
的焦點坐標分別為
,因為拋物線的焦點坐標為
,由題意知
,所以
,即拋物線的方程為
.
(Ⅱ)由(Ⅰ)知拋物線的準線方程為
,設
,顯然
.故
,從而直線
的方程為
,聯立直線與拋物線方程得
,解得
①當,即
時,直線
的方程為
,
②當,即
時,直線
的方程為
,整理得
的方程為
,此時直線恒過定點
,
也在直線
的方程為
上,故直線
的方程恒過定點
.
【題型】解答題
【結束】
21
【題目】已知函數,
(Ⅰ)當時,求函數
的單調遞減區間;
(Ⅱ)若時,關于
的不等式
恒成立,求實數
的取值范圍;
(Ⅲ)若數列滿足
,
,記
的前
項和為
,求證:
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com