日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知向量
a
=(
3
sinωx,cosωx),
b
=( cosωx,cosωx),其中ω>0,記函數f(x)=
a
b
-
1
2
已知f(x)的最小正周期為π.
(1)求ω;
(2)求f(x)的單調區間;對稱軸方程;對稱中心坐標;
(3)當0<x≤
π
3
時,試求f(x)的最值.
分析:(1)由函數f(x)=
a
b
-
1
2
轉化為sin(2ωx+
π
6
),利用周期公式求得ω;
(2)根據正弦函數的單調性、對稱軸方程和對稱中心回答即可;
(3)由(1)得f(x)=sin(2x+
π
6
),由0<x≤
π
3
得出
π
6
<2x+
π
6
6
,再利用整體思想求解.
解答:解:(1)f(x)=
3
sinωxcosωx+cos2ωx-
1
2

=
3
2
sin2ωx+
1
2
(1+cos2ωx)-
1
2

=sin(2ωx+
π
6

∵ω>0,T=π
∴ω=1
(2)令2kπ-
π
2
≤2x+
π
6
≤2kπ+
π
2
,解得kπ-
π
3
≤x≤kπ+
π
6

∴f(x)單調遞增區間為[kπ-
π
3
,kπ+
π
6
]
令2kπ+
π
2
≤2x+
π
6
≤2kπ+
2
,解得kπ+
π
6
≤x≤kπ+
3

∴f(x)單調遞減區間為[kπ+
π
6
,kπ+
3
]
令2x+
π
6
=kπ+
π
2
,解得x=
2
+
π
6
,k∈z即為函數的對稱軸方程;
令2x+
π
6
=kπ,解得x=
2
-
π
12
,對稱中心的坐標是(
2
-
π
12
,0),k∈Z
(3)由(1),得f(x)=sin(2x+
π
6

∴0<x≤
π
3
,∴
π
6
<2x+
π
6
6

∴f(x)∈[
1
2
,1]
∴f(x)max=1  f(x)min=
1
2
點評:本題主要考查用向量運算將函數轉化為一個角的一種三角函數,進一步研究三角函數的周期性、單調性、最值等.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知向量
a
=(
3
sinωx,cosωx),
b
=( cosωx,cosωx),其中ω>0,記函數f(x)=
a
b
,若f(x)的最小正周期為π
(Ⅰ)求ω;
(Ⅱ)當0<x≤
π
3
時,求f(x)的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(3sin α,cos α),
b
=(2sin α,5sin α-4cos α),α∈(
2
,2π)
,且
a
b

(1)求tan α的值;
(2)求cos(
α
2
+
π
3
)
的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(
3
sinωx,cosωx),
b
=(cosωx,-cosωx),(ω>0),函數f(x)=
a
b
+
1
2
的圖象的兩相鄰對稱軸間的距離為
π
4

(1)求ω值;
(2)若x∈(
7
24
π,
5
12
π)
時,f(x)=-
3
5
,求cos4x的值;
(3)若cosx≥
1
2
,x∈(0,π),且f(x)=m有且僅有一個實根,求實數m的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(
3
sinωx,cosωx),
b
=(cosωx,3cosωx),ω>0,設f(x)=
a
b
,且f(x)的最小正周期為π.
(1)求ω的值;
(2)求函數f(x)的單調遞增區間;
(3)函數f(x)的圖象可由函數y=sin2x經過怎樣的變換得到.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久久久久久久久久一本门道91 | 成人性大片免费观看网站 | av高清在线免费观看 | 久久久www成人免费无遮挡大片 | 欧美成人精品一区二区三区 | 成人免费视频在线观看 | 国产中文字幕在线 | 日韩大片免费播放 | 国产aaa毛片 | 国产在线一区二区 | 日韩视频在线播放 | 欧美一区二区影院 | 精品国产91亚洲一区二区三区www | www.日韩 | 成人黄色在线视频 | 国产精品自产av一区二区三区 | 蜜桃一本色道久久综合亚洲精品冫 | 午夜精选视频 | 一区二区在线视频免费观看 | 日本成人一区二区三区 | 99精品欧美一区二区三区 | 精品一区二区三区免费毛片爱 | 亚洲精品久久 | 精品亚洲一区二区三区在线观看 | 欧洲一区| 97精品在线视频 | 欧美色综合一区二区三区 | 蜜桃comaaa| 国产精品久久久久久久久久妇女 | 国产在线a | 日本免费一区二区三区视频 | 国产精品美女在线观看直播 | 久久久久久高清 | 91天堂| 黄a网站| 97久久精品人人做人人爽50路 | 亚洲三区在线观看 | 一二区精品| 爱爱小视频免费看 | 自拍亚洲 | 久久久亚洲一区 |