日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知向量
a
=(3sin α,cos α),
b
=(2sin α,5sin α-4cos α),α∈(
2
,2π)
,且
a
b

(1)求tan α的值;
(2)求cos(
α
2
+
π
3
)
的值.
分析:( 1)通過向量關系,求
a
b
=0,化簡后,求出tanα=-
4
3

(2)根據α的范圍,求出
α
2
的范圍,確定
α
2
的正弦、余弦的值,利用兩角和的余弦公式求出cos(
α
2
+
π
3
)
的值.
解答:解:(1)∵
a
b
,∴
a
b
=0.
a
=(3sinα,cosα),
b
=(2sinα,5sinα-4cosα),
a
b
=6sin2α+5sinαcosα-4cos2α=0.
由于cosα≠0,∴6tan2α+5tanα-4=0.
解之,得tanα=-
4
3
,或tanα=
1
2

∵α∈(
2
,2π
),tanα<0,
故tanα=
1
2
(舍去).
∴tanα=-
4
3

(2)∵α∈(
2
, 2π ),∴
α
2
∈(
4
,π)

由tanα=-
4
3
,求得tan
α
2
=-
1
2
或tan
α
2
=2(舍去)
∴sin
α
2
=
5
5
,cos
α
2
=-
2
5
5

cos(
α
2
+
π
3
)=cos
α
2
cos
π
3
-sin
α
2
sin
π
3

=-
2
5
5
×
1
2
-
5
5
×
3
2
=-
2
5
+
15
10
點評:本題考查兩角和與差的余弦函數,數量積的坐標表達式,弦切互化,考查計算能力,是基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知向量
a
=(
3
sinωx,cosωx),
b
=( cosωx,cosωx),其中ω>0,記函數f(x)=
a
b
,若f(x)的最小正周期為π
(Ⅰ)求ω;
(Ⅱ)當0<x≤
π
3
時,求f(x)的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(
3
sinωx,cosωx),
b
=(cosωx,-cosωx),(ω>0),函數f(x)=
a
b
+
1
2
的圖象的兩相鄰對稱軸間的距離為
π
4

(1)求ω值;
(2)若x∈(
7
24
π,
5
12
π)
時,f(x)=-
3
5
,求cos4x的值;
(3)若cosx≥
1
2
,x∈(0,π),且f(x)=m有且僅有一個實根,求實數m的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(
3
sinωx,cosωx),
b
=( cosωx,cosωx),其中ω>0,記函數f(x)=
a
b
-
1
2
已知f(x)的最小正周期為π.
(1)求ω;
(2)求f(x)的單調區間;對稱軸方程;對稱中心坐標;
(3)當0<x≤
π
3
時,試求f(x)的最值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(
3
sinωx,cosωx),
b
=(cosωx,3cosωx),ω>0,設f(x)=
a
b
,且f(x)的最小正周期為π.
(1)求ω的值;
(2)求函數f(x)的單調遞增區間;
(3)函數f(x)的圖象可由函數y=sin2x經過怎樣的變換得到.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 亚洲一区国产视频 | aa级毛片毛片免费观看久 | 成人片免费看 | 日韩1区| 国产情侣一区二区三区 | 欧美日韩一区二区在线播放 | 精品九九久久 | 麻豆专区一区二区三区四区五区 | 美女一区二区三区在线观看 | 日本久久精品视频 | 欧美精品一区二区三区四区 | 久久人人爽人人爽人人片av高清 | 国产韩国精品一区二区三区 | 中文字幕一二三区有限公司 | 久久精品视频在线观看 | 污视频网站入口 | 黄色一级视频 | 欧洲亚洲精品久久久久 | 日韩在线播放网址 | 免费的靠逼视频 | 欧美一级视频 | 一区二区免费 | 香蕉在线影院 | 久久成人精品 | 91麻豆精品国产91久久久久 | 日韩成人久久 | 国产成人啪精品午夜在线观看 | 免费看男女www网站入口在线 | 精品一区在线 | 成人亚洲| 久久精品一 | 羞羞视频网站 | 国产在线观看91一区二区三区 | 欧美日韩成人在线视频 | 亚洲精选久久 | 日韩成人午夜电影 | 欧美日韩激情四射 | 久久久久久毛片免费观看 | 久久精品免费一区二区 | av一区二区在线播放 | 一本之道高清码 |