已知函數(shù)(
為實(shí)常數(shù)).
(1)若函數(shù)圖像上動(dòng)點(diǎn)
到定點(diǎn)
的距離的最小值為
,求實(shí)數(shù)
的值;
(2)若函數(shù)在區(qū)間
上是增函數(shù),試用函數(shù)單調(diào)性的定義求實(shí)數(shù)
的取值范圍;
(3)設(shè),若不等式
在
有解,求
的取值范圍.
(1)或
;(2)
;(3)當(dāng)
時(shí),
;
當(dāng)時(shí),
.
【解析】
試題分析:(1)點(diǎn)是函數(shù)
上的點(diǎn),因此我們?cè)O(shè)
點(diǎn)坐標(biāo)為
,這樣可把
表示為關(guān)于
的函數(shù),而其最小值為2,利用不等式的知識(shí)可求出
,即
點(diǎn)坐標(biāo),用基本不等式時(shí)注意不等式成立的條件;(2)題目已經(jīng)要求我們用函數(shù)單調(diào)性的定義求解,因此我們直接用定義,設(shè)
,則函數(shù)在
上單調(diào)遞增,說(shuō)明
恒成立,變形后可得
恒成立,即
小于
的最小值(如有最小值的話),事實(shí)上
,故
;(3)不等式
在
有解,則
,因此
大于或等于
的最小值,下面我們要求
的最小值,而
,可以看作是關(guān)于
的二次函數(shù),用換元法變?yōu)榍蠖魏瘮?shù)在給定區(qū)間上的最小值,注意分類討論,分類的依據(jù)是二次函數(shù)的對(duì)稱軸與給定區(qū)間的關(guān)系.
試題解析:(1)設(shè),則
,
(1分)
,
(1分)
當(dāng)時(shí),解得
;當(dāng)
時(shí),解得
. (1分)
所以,或
.
(1分)
(只得到一個(gè)解,本小題得3分)
(2)由題意,任取、
,且
,
則, (2分)
因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014030104454665062227/SYS201403010447376705734578_DA.files/image040.png">,,所以
,即
, (2分)
由,得
,所以
.
所以,的取值范圍是
.
(2分)
(3)由,得
,
因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014030104454665062227/SYS201403010447376705734578_DA.files/image049.png">,所以,
(2分)
令,則
,所以
,令
,
,
于是,要使原不等式在有解,當(dāng)且僅當(dāng)
(
). (1分)
因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014030104454665062227/SYS201403010447376705734578_DA.files/image057.png">,所以圖像開(kāi)口向下,對(duì)稱軸為直線
,
因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014030104454665062227/SYS201403010447376705734578_DA.files/image052.png">,故當(dāng),即
時(shí),
;
(4分)
當(dāng),即
時(shí),
.
(5分)
綜上,當(dāng)時(shí),
;
當(dāng)時(shí),
.
(6分)
考點(diǎn):(1)兩點(diǎn)間的距離公式與基本不等式;(2)函數(shù)的單調(diào)性;(3)不等式有解問(wèn)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分12分)已知函數(shù)(
為實(shí)常數(shù))(Ⅰ)若函數(shù)
為奇函數(shù),求此函數(shù)的單調(diào)區(qū)間;(Ⅱ)記
,當(dāng)
,試討論函數(shù)
的圖象與函數(shù)
的圖象的交點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)(
為實(shí)常數(shù)).
(1)若,作函數(shù)
的圖像;
(2)設(shè)在區(qū)間
上的最小值為
,求
的表達(dá)式;
(3)設(shè),若函數(shù)
在區(qū)間
上是增函數(shù),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分12分)已知函數(shù)(
為實(shí)常數(shù))(Ⅰ)若函數(shù)
為奇函數(shù),求此函數(shù)的單調(diào)區(qū)間;(Ⅱ)記
,當(dāng)
,試討論函數(shù)
的圖象與函數(shù)
的圖象的交點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011年江西省高二第二學(xué)期期中考試?yán)砜茢?shù)學(xué) 題型:解答題
(本大題共14分)
已知函數(shù)(
為實(shí)常數(shù))的兩個(gè)極值點(diǎn)為
,且滿足
(1)求的取值范圍;
(2)比較與
的大小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com