【題目】下列命題中正確的是 ( )
A.由五個平面圍成的多面體只能是四棱錐
B.棱錐的高線可能在幾何體之外
C.僅有一組對面平行的六面體是棱臺
D.有一個面是多邊形,其余各面是三角形的幾何體是棱錐
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓:
,點
.
(1)過點的直線
與圓交與
兩點,若
,求直線
的方程;
(2)從圓外一點
向該圓引一條切線,切點記為
,
為坐標(biāo)原點,且滿足
,求使得
取得最小值時點
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)過長期觀測得到:在交通繁忙的時段內(nèi),某公路汽車的車流量(千輛/
)與汽車的平均速度
之間的函數(shù)關(guān)系式為
.
(I)若要求在該段時間內(nèi)車流量超過2千輛/ ,則汽車在平均速度應(yīng)在什么范圍內(nèi)?
(II)在該時段內(nèi),當(dāng)汽車的平均速度為多少時,車流量最大?最大車流量為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題:“,使等式
成立”是真命題.
(1)求實數(shù)的取值集合
;
(2)設(shè)不等式的解集為
,若
是
的必要不充分條件,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)已知數(shù)列和
滿足
,若
為等比數(shù)列,且
,
.
(1)求與
;
(2)設(shè)(
),記數(shù)列
的前
項和為
,
(I)求;
(II)求正整數(shù),使得對任意
均有
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某隧道設(shè)計為雙向四車道,車道總寬為,要求通行車輛限高
,隧道全長為
,隧道的拱線可近似的看成半個橢圓形狀.
(1)若最大拱高為
,則隧道設(shè)計的拱寬
是多少?
(2)若最大拱高不小于
,則應(yīng)如何設(shè)計拱高
和拱寬
,才能使隧道的土方工程量最?
(注: 1.半個橢圓的面積公式為;2.隧道的土方工程量=截面面積
隧道長)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中將底面為直角三角形的直棱柱稱為塹堵,將底面為矩形的棱臺稱為芻童.在如圖所示的塹堵與芻童
的組合體中
,
.臺體體積公式:
,其中
分別為臺體上、下底面面積,
為臺體高.
(Ⅰ)證明:直線
平面
;
(Ⅱ)若,
,
,三棱錐
的體積
,求該組合體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解某年級同學(xué)每天參加體育鍛煉的時間,比較恰當(dāng)?shù)厥占瘮?shù)據(jù)的方法是( )
A.查閱資料B.問卷調(diào)查C.做試驗D.以上均不對
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量,
,
,函數(shù)
,已知
的圖像的一個對稱中心與它相鄰的一條對稱軸之間的距離為1,且經(jīng)過點
(Ⅰ)求函數(shù)的解析式
(Ⅱ)先將函數(shù)圖像上各點的橫坐標(biāo)變?yōu)樵瓉淼?/span>
倍,縱坐標(biāo)不變,再向右平移
個單位長度,向下平移3個單位長度,得到函數(shù)
的圖像,若函數(shù)
的圖像關(guān)于原點對稱,求實數(shù)
的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com