日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

(文科)若函數的定義域和值域均為,則的范圍是____________。

 

【答案】

【解析】

試題分析:因為函數的定義域和值域均為,那么f(x)與y=x的圖象有兩個交點,

即方程f(x)-x=0有兩個根.

設g(x)=f(x)-x=,則g'(x)=-1,令g'(x)="0" 得 x=

所以當x=logea時g(x)取得最大值-logalna-logae

由-logalna-logae>0 得1<a<,故答案為

考點:本題主要考查函數的定義域、函數的值域、對數函數閉區間的最值。

點評:中檔題,本題綜合性較強,從題意出發認識到方程f(x)-x=0有兩個根,利用構造法解題是關鍵。本題難度較大。

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

定義:如果數列{an}的任意連續三項均能構成一個三角形的三邊長,則稱{an}為“三角形”數列.對于“三角形”數列{an},如果函數y=f(x)使得bn=f(an)仍為一個“三角形”數列,則稱y=f(x)是數列{an}的“保三角形函數”,(n∈N).
(1)已知{an}是首項為2,公差為1的等差數列,若f(x)=kx,(k>1)是數列{an}的“保三角形函數”,求k的取值范圍;
(2)已知數列{cn}的首項為2010,Sn是數列{cn}的前n項和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數列;
(3)[文科]若g(x)=lgx是(2)中數列{cn}的“保三角形函數”,問數列{cn}最多有多少項.
[理科]根據“保三角形函數”的定義,對函數h(x)=-x2+2x,x∈[1,A],和數列1,1+d,1+2d,(d>0)提出一個正確的命題,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

定義:如果數列{an}的任意連續三項均能構成一個三角形的三邊長,則稱{an}為“三角形”數列.對于“三角形”數列{an},如果函數y=f(x)使得bn=f(an)仍為一個“三角形”數列,則稱y=f(x)是數列{an}的“保三角形函數”,(n∈N).
(1)已知{an}是首項為2,公差為1的等差數列,若f(x)=kx,(k>1)是數列{an}的“保三角形函數”,求k的取值范圍;
(2)已知數列{cn}的首項為2010,Sn是數列{cn}的前n項和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數列;
(3)[文科]若g(x)=lgx是(2)中數列{cn}的“保三角形函數”,問數列{cn}最多有多少項.
[理科]根據“保三角形函數”的定義,對函數h(x)=-x2+2x,x∈[1,A],和數列1,1+d,1+2d,(d>0)提出一個正確的命題,并說明理由.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年北京市石景山區高三(上)期末數學試卷(文科)(解析版) 題型:解答題

定義:如果數列{an}的任意連續三項均能構成一個三角形的三邊長,則稱{an}為“三角形”數列.對于“三角形”數列{an},如果函數y=f(x)使得bn=f(an)仍為一個“三角形”數列,則稱y=f(x)是數列{an}的“保三角形函數”,(n∈N).
(1)已知{an}是首項為2,公差為1的等差數列,若f(x)=kx,(k>1)是數列{an}的“保三角形函數”,求k的取值范圍;
(2)已知數列{cn}的首項為2010,Sn是數列{cn}的前n項和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數列;
(3)[文科]若g(x)=lgx是(2)中數列{cn}的“保三角形函數”,問數列{cn}最多有多少項.
[理科]根據“保三角形函數”的定義,對函數h(x)=-x2+2x,x∈[1,A],和數列1,1+d,1+2d,(d>0)提出一個正確的命題,并說明理由.

查看答案和解析>>

科目:高中數學 來源:2010年上海市靜安、楊浦、青浦、寶山區高考數學二模試卷(文理合卷)(解析版) 題型:解答題

定義:如果數列{an}的任意連續三項均能構成一個三角形的三邊長,則稱{an}為“三角形”數列.對于“三角形”數列{an},如果函數y=f(x)使得bn=f(an)仍為一個“三角形”數列,則稱y=f(x)是數列{an}的“保三角形函數”,(n∈N).
(1)已知{an}是首項為2,公差為1的等差數列,若f(x)=kx,(k>1)是數列{an}的“保三角形函數”,求k的取值范圍;
(2)已知數列{cn}的首項為2010,Sn是數列{cn}的前n項和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數列;
(3)[文科]若g(x)=lgx是(2)中數列{cn}的“保三角形函數”,問數列{cn}最多有多少項.
[理科]根據“保三角形函數”的定義,對函數h(x)=-x2+2x,x∈[1,A],和數列1,1+d,1+2d,(d>0)提出一個正確的命題,并說明理由.

查看答案和解析>>

科目:高中數學 來源:2010年高考數學專項復習:創新題(3)(解析版) 題型:解答題

定義:如果數列{an}的任意連續三項均能構成一個三角形的三邊長,則稱{an}為“三角形”數列.對于“三角形”數列{an},如果函數y=f(x)使得bn=f(an)仍為一個“三角形”數列,則稱y=f(x)是數列{an}的“保三角形函數”,(n∈N).
(1)已知{an}是首項為2,公差為1的等差數列,若f(x)=kx,(k>1)是數列{an}的“保三角形函數”,求k的取值范圍;
(2)已知數列{cn}的首項為2010,Sn是數列{cn}的前n項和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數列;
(3)[文科]若g(x)=lgx是(2)中數列{cn}的“保三角形函數”,問數列{cn}最多有多少項.
[理科]根據“保三角形函數”的定義,對函數h(x)=-x2+2x,x∈[1,A],和數列1,1+d,1+2d,(d>0)提出一個正確的命題,并說明理由.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国内自拍视频在线观看 | 日韩国产精品视频 | 在线看片日韩 | 一级片在线播放 | 中文字幕在线免费 | 久久久久香蕉视频 | 欧美日韩在线视频一区二区 | 欧美视频区 | 国产精品视频 – 无名网 | 久久黄色| 免费视频一区 | 欧美日韩精品 | 欧洲亚洲视频 | 一区二区三区在线播放 | 伊人春色网 | 狠狠久久综合 | 欧美一级一区 | 中文字幕在线网址 | 天天操妹子 | 欧美一级免费看 | 91精品国产综合久久精品 | 久久久久久久伦理 | 欧美一区二区三区四区五区 | 91免费看电影 | 色久在线 | 久久久久美女 | 欧美精品亚洲 | 欧洲在线一区 | 国产精品久久久久久久久久三级 | 中文字幕亚洲一区二区三区 | 丁香久久| 成人欧美一区二区三区黑人孕妇 | 欧美a区| 亚洲欧美一区二区三区视频 | 国产精品一区二区无线 | 日本天堂在线 | 久久久久av | 亚洲毛片 | 五月激情站 | 国产欧美一区二区三区在线看 | 久久草在线视频 |