【題目】已知圓的圓心坐標為
,且該圓經過點
.
(1)求圓的標準方程;
(2)若點也在圓
上,且弦
長為8,求直線
的方程;
(3)直線交圓
于
,
兩點,若直線
,
的斜率之積為2,求證:直線
過一個定點,并求出該定點坐標.
科目:高中數學 來源: 題型:
【題目】如圖,已知橢圓的離心率為
,
分別是橢圓的左右焦點,點
是橢圓上任意一點,且
.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)在直線上是否存在點Q,使以
為直徑的圓經過坐標原點O,若存在,求出線段
的長的最小值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:上的點到右焦點F的最大距離為
,離心率為
.
求橢圓C的方程;
如圖,過點
的動直線l交橢圓C于M,N兩點,直線l的斜率為
,A為橢圓上的一點,直線OA的斜率為
,且
,B是線段OA延長線上一點,且
過原點O作以B為圓心,以
為半徑的圓B的切線,切點為
令
,求
取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知U=R且A={x|a2x2-5ax-6<0},B{x||x-2|≥1}.
(1)若a=1,求(UA)B;
(2)求不等式a2x2-5ax-6<0(a∈R)的解集.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
的左、右焦點分別是
,
,
,
是其左右頂點,點
是橢圓
上任一點,且
的周長為6,若
面積的最大值為
.
(1)求橢圓的方程;
(2)若過點且斜率不為0的直線交橢圓
于
,
兩個不同點,證明:直線
與
的交點在一條定直線上.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=ax+(a,b∈Z),曲線y=f(x)在點(2,f(2))處的切線方
程為y=3.
(1)求f(x)的解析式;
(2)證明:曲線y=f(x)上任一點的切線與直線x=1和直線y=x所圍三角形的面積為定值,
并求出此定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】無窮等差數列的各項均為整數,首項為
、公差為
,
是其前
項和,
是其中的三項,給出下列命題:
①對任意滿足條件的,存在
,使得
一定是數列
中的一項;
②存在滿足條件的數列,使得對任意的
,
成立;
③對任意滿足條件的,存在
,使得
一定是數列
中的一項。
其中正確命題的序號為( )
A.①②B.②③C.①③D.①②③
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,直線
的參數方程為
(
為參數),以坐標原點為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
,點
的極坐標為
.
(1)求的直角坐標方程和
的直角坐標;
(2)設與
交于
,
兩點,線段
的中點為
,求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知為坐標原點,橢圓
:
的離心率為
,直線
:
交橢圓于
,
兩點,
,且點
在橢圓
上,當
時,
.
(1)求橢圓方程;
(2)試探究四邊形的面積是否為定值,若是,求出此定值;若不是,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com