將側棱相互垂直的三棱錐稱為“直角三棱錐”,三棱錐的側面和底面分別叫直角三棱錐的“直角面和斜面”.直角三角形中,直角邊邊長為a,b,斜邊邊長為c,直角三角形具有性質:c2=a2+b2.在直角三棱錐中,直角面面積分別為S1,S2,S3,斜面面積為S,仿照直角三角形性質寫出直角三棱錐具有的性質: .
【答案】分析:本題考查的知識點是類比推理,在由平面幾何的性質類比推理空間立體幾何性質時,我們常用的思路是:由平面幾何中點的性質,類比推理空間幾何中線的性質;由平面幾何中線的性質,類比推理空間幾何中面的性質;由平面幾何中面的性質,類比推理空間幾何中體的性質;故由:“直角三角形中,直角邊邊長為a,b,斜邊邊長為c,直角三角形具有性質:c2=a2+b2.”(邊的性質),類比到空間可得的結論是“在直角三棱錐中,直角面面積分別為S1,S2,S3,斜面面積為S”,S12+S22+S32=S2
解答:解:在由平面幾何的性質類比推理空間立體幾何性質時,我們常用的思路是:
由平面幾何中點的性質,類比推理空間幾何中線的性質;
由平面幾何中線的性質,類比推理空間幾何中面的性質;
由平面幾何中面的性質,類比推理空間幾何中體的性質;
故由:“直角三角形中,直角邊邊長為a,b,斜邊邊長為c,直角三角形具有性質:c2=a2+b2.”(邊的性質),
類比到空間可得的結論是“在直角三棱錐中,直角面面積分別為S1,S2,S3,斜面面積為S”,S12+S22+S32=S2
故答案為:S12+S22+S32=S2
點評:類比推理的一般步驟是:(1)找出兩類事物之間的相似性或一致性;(2)用一類事物的性質去推測另一類事物的性質,得出一個明確的命題(猜想).在由平面圖形的性質向空間物體的性質進行類比時,常用的思路有:由平面圖形中點的性質類比推理出空間里的線的性質,由平面圖形中線的性質類比推理出空間中面的性質,由平面圖形中面的性質類比推理出空間中體的性質.