【題目】已知圓M的方程為,直線l的方程為
,點P在直線l上,過點P作圓M的切線PA,PB,切點為A,B.
若
,試求點P的坐標;
求四邊形PAMB面積的最小值及此時點P的坐標;
求證:經過A,P,M三點的圓必過定點,并求出所有定點的坐標.
【答案】(1)或
;(2)四邊形PAMB面積的最小值為
,P的坐標為
;(3)見解析.
【解析】
設
,連接MP,分析易得
,即有
,解可得m的值,即可得答案;
根據題意,分析易得
,又由
,當MP最小時,即直線MP與直線l垂直時,四邊形PAMB面積最小,設出P的坐標,則有
,解可得n的值,進而分析MP的最小值,求出四邊形PAMB面積,即可得答案;
根據題意,分析可得:過A,P,M三點的圓為以MP為直徑的圓,設P的坐標為
,用m表示過A,P,M三點的圓為
,結合直線與圓位置關系,分析可得答案.
根據題意,點P在直線l上,
設,連接MP,
因為圓M的方程為,
所以圓心,半徑
.
因為過點P作圓M的切線PA、PB,切點為A、B;
則有,
,且
,
易得≌
,
又由,即
,
則,
即有,
解可得:或
,
即P的坐標為或
;
根據題意,
≌
,則
,
又由,
當MP最小時,即直線MP與直線l垂直時,四邊形PAMB面積最小,
設此時P的坐標為;有
,解可得
,
即P的坐標為;
此時,則四邊形PAMB面積的最小值為
;
根據題意,PA是圓M的切線,則
,則過A,P,M三點的圓為以MP為直徑的圓,
設P的坐標為,
,
則以MP為直徑的圓為,
變形可得:,即
;
則有,解可得:
或
;
則當、
和
、
時,
恒成立,
則經過A,P,M三點的圓必過定點,且定點的坐標為和
科目:高中數學 來源: 題型:
【題目】已知直線l: (t為參數,α為l的傾斜角),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C為:ρ2﹣6ρcosθ+5=0.
(1)若直線l與曲線C相切,求α的值;
(2)設曲線C上任意一點的直角坐標為(x,y),求x+y的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,P是△ABC所在平面外的一點,點A′,B′,C′分別是△PBC,△PCA,△PAB的重心.
(1)求證:平面ABC∥平面A′B′C′;
(2)求△A′B′C′與△ABC的面積之比.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,在高為2的梯形ABCD中,,
,
,過A、B分別作
,
,垂足分別為E、
已知
,將D、C沿AE、BF折向同側,得空間幾何體
,如圖2.
若
,求證:
;
若
,線段AB的中點是P,求CP與平面ACD所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】銳角△ABC中,其內角A,B滿足:2cosA=sinB﹣ cosB.
(1)求角C的大;
(2)D為AB的中點,CD=1,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖四棱錐中,底面ABCD是平行四邊形,
平面ABCD,垂足為G,G在AD上,且
,
,
,
,E是BC的中點.
求異面直線GE與PC所成的角的余弦值;
求點D到平面PBG的距離;
若F點是棱PC上一點,且
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量 =(﹣2sin(π﹣x),cosx),
=(
cosx,2sin(
﹣x)),函數f(x)=1﹣
.
(1)若x∈[0, ],求函數f(x)的值域;
(2)當x∈[0,π]時,求f(x)的單調遞增區間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C的中心在原點O,焦點在x軸上,離心率為 ,橢圓C上的點到右焦點的最大距離為3.
(1)求橢圓C的標準方程;
(2)斜率存在的直線l與橢圓C交于A,B兩點,并且滿足|2 +
|=|2
﹣
|,求直線在y軸上截距的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com