日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
若函數f(x)和g(x)的定義域、值域都是R,則不等式f(x)>g(x)有解的充要條件是( )
A.??x∈R,f(x)>g(x)
B.有無窮多個x(x∈R),使得f(x)>g(x)
C.??x∈R,f(x)>g(x)
D.{x∈R|f(x)≤g(x)}
【答案】分析:根據不等式解的定義,只要存在x能使不等式成立,則x即為不等式的解,故f(x)>g(x)有解的充要條件是?x∈R,f(x)>g(x),而解的個數可能為有限個故有無窮多個x(x∈R),使得f(x)>g(x)與?x∈R,f(x)>g(x)可排除,而{x∈R|f(x)≤g(x)}表示f(x)≤g(x)恒成立,此時不等式f(x)>g(x)無解可排除.
解答:解:當不等式f(x)>g(x)僅有一解時,
B中,有無窮多個x(x∈R),使得f(x)>g(x)不成立,
故B不為不等式f(x)>g(x)有解的充要條件;
C中,?x∈R,f(x)>g(x)成不成立,
故C不為不等式f(x)>g(x)有解的充要條件;
D中,{x∈R|f(x)≤g(x)}也不一定成立
故D不為不等式f(x)>g(x)有解的充要條件;
故選A
點評:本題考查的知識點是必要條件、充分條件與充要條件的判斷,對全稱命題和特稱命題真假的判斷要注意:全稱命題中,要求所有的元素都要滿足性質,故需要嚴格的證明;但特稱命題為真時,我們只要舉出一個符合條件的元素值即可.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

5、若函數f(x)和g(x)的定義域、值域都是R,則不等式f(x)>g(x)有解的充要條件是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x2+(a+1)x+lg|a+2|,g(x)=(a+1)x,(a∈R,a≠-2).
(1)若函數f(x)和g(x)在區間[lg|a+2|,(a+1)2]上都是減函數,求實數a的取值范圍;
(2)在(1)的條件下,比較f(1)與
16
的大小,寫出理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a,b是實數,函數f(x)=x3+ax,g(x)=x2+bx,f′(x)和g′(x)是f(x),g(x)的導函數,若f′(x)g′(x)≥0在區間I上恒成立,則稱f(x)和g(x)在區間I上單調性一致
(1)設a>0,若函數f(x)和g(x)在區間[-1,+∞)上單調性一致,求實數b的取值范圍;
(2)設a<0,且a≠b,若函數f(x)和g(x)在以a,b為端點的開區間上單調性一致,求|a-b|的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

若函數f(x)和g(x)都是奇函數,且F(x)=af(x)+bg(x)+2在(0,+∞)上有最大值6,則F(x)在(-∞,0)上( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

若函數f(x)和g(x)都為奇函數,函數F(x)=af(x)+bg(x)+3在(0,+∞)上有最大值10,則F(x)在(-∞,0)上有( 。

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日韩福利在线 | 国产91久久精品一区二区 | 国产99久久久久久免费看农村 | 国产1级片 | 国产精品高潮呻吟久久久 | 成人激情开心网 | 中文在线一区二区 | 亚洲欧美国产一区二区 | 精品中文字幕一区二区 | 国产成人精品网站 | av观看免费| 久久国产精品免费视频 | 日韩久久一区 | 日韩精品一区二区三区在线播放 | 99精品国产高清在线观看 | 美国黄色毛片女人性生活片 | 美国av一区二区三区 | 亚洲成a| 亚州av在线 | 国产精品毛片一区二区在线看 | 免费看片国产 | 久久男人 | 成人精品在线 | 日韩欧美一区二区三区久久婷婷 | 日韩在线欧美 | 一区二区三区在线 | 色噜噜视频 | 久久99深爱久久99精品 | 欧美日韩精品一区二区三区 | 国产在线二区 | 亚洲 国产 另类 精品 专区 | 精品国产乱码久久久久久影片 | 日韩电影免费在线观看中文字幕 | 欧美午夜精品一区二区三区电影 | 青青久久久| 夜夜久久 | 天天曰天天干 | 日本一级中文字幕久久久久久 | 免费高清一级毛片 | 国产精品一区二区日韩新区 | 日韩视频在线一区 |