【題目】已知方程x2+y2﹣2(m+3)x+2(1﹣4m2)y+16m4+9=0表示一個圓.
(1)求實數m的取值范圍;
(2)求該圓半徑r的取值范圍.
【答案】
(1)解:由方程x2+y2﹣2(m+3)x+2(1﹣4m2)y+16m4+9=0
變形得:[x﹣(m+3)]2+[y+(1﹣4m2)]2=﹣7m2+6m+1,
當且僅當﹣7m2+6m+1>0,即7m2﹣6m﹣1<0時方程表示圓;
所以 <m<1時,該方程表示一個圓
(2)解:在 <m<1時,設r2=﹣7m2+6m+1,為開口向下的拋物線,
r2=﹣7m2+6m+1=
∴
∴
【解析】(1)將方程化為標準方程的形式,要得到方程為圓,則方程的右邊大于0,可得不等式,解之可得到m的范圍.(2)可設r2=﹣7m2+6m+1,在(1)求出的m的范圍中,利用二次函數求最值的方法,可確定函數的值域.
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,點E為棱PC的中點.
(Ⅰ)證明:BE⊥DC;
(Ⅱ)求直線BE與平面PBD所成角的正弦值;
(Ⅲ)若F為棱PC上一點,滿足BF⊥AC,求二面角F﹣AB﹣P的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,正方形ABCD和四邊形ACEF所在的平面互相垂直.EF∥AC,AB= ,CE=EF=1. (Ⅰ)求證:AF∥平面BDE;
(Ⅱ)求證:CF⊥平面BDE.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C:x2+y2+2x﹣4y+1=0,O為坐標原點,動點P在圓C外,過P作圓C的切線,設切點為M.
(1)若點P運動到(1,3)處,求此時切線l的方程;
(2)求滿足條件|PM|=|PO|的點P的軌跡方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 .
(1)證明f(x)在(0,+∞)上單調遞增;
(2)是否存在實數a使得f(x)的定義域、值域都是 ,若存在求出a的值,若不存在說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在正四棱錐中,已知異面直線
與
所成的角為
,給出下面三個命題:
:若
,則此四棱錐的側面積為
;
:若
分別為
的中點,則
平面
;
:若
都在球
的表面上,則球
的表面積是四邊形
面積的
倍.
在下列命題中,為真命題的是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,直線的參數方程為
,其中
為參數,
,再以坐標原點
為極點,以
軸正半軸為極軸,建立極坐標系,曲線
的極坐標方程為
,其中
,
,直線
與曲線
交于
兩點.
(1)求的值;
(2)已知點,且
,求直線
的普通方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com