如圖,已知矩形中,
,
,將矩形沿對角線
把
折起,使
移到
點,且
在平面
上的射影
恰好在
上.
(1)求證:;
(2)求證:平面平面
;
(3)求二面角的余弦值.
(1)詳見解析;(2)詳見解析;(3)二面角的余弦值
.
解析試題分析:(1)利用折疊后點在平面
內的射影點在棱
上得到
平面
,從而得到
,再結合
即可證明
平面
,進而證明
;(2)由(1)中的結論
平面
并結合平面與平面垂直的判定定理即可證明平面
平面
;(3)先作
,連接
,利用(1)中的結論
平面
得到
,于是得到
平面
,于是得到
為二面角
的平面角,然后在直角三角形
中計算
,進而確定二面角
的余弦值;另一種方法是利用空間向量法計算二面角
的余弦值.
試題解析:(1)在平面
上的射影
在
上,
平面
,
又平面
,
,
又,
,
平面
,
又平面
,
;
(2)四邊形
是矩形,
,
由(1)知,
,
平面
,
又平面
,
平面
平面
;
(3)平面
,
,在
中,由
,
,得
,
,
過點作
,垂足為點
,連接
,
由平面
,
科目:高中數學 來源: 題型:解答題
如圖,四邊形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2.又AC=1,∠ACB=120°,AB⊥PC,直線AM與直線PC所成的角為60°.
(1)求證:PC⊥AC;
(2)求二面角M﹣AC﹣B的余弦值;
(3)求點B到平面MAC的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖所示,在四棱錐P-ABCD中,底面ABCD是正方形,側棱PD^底面ABCD,PD=DC,點E是PC的中點,作EF^PB交PB于點F,
(1)求證:PA//平面EDB;
(2)求證:PB^平面EFD;
(3)求二面角C-PB-D的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(如圖,在四棱錐P﹣ABCD中,底面是邊長為2的菱形,∠BAD=60°,對角線AC與BD相交于點O,PO為四棱錐P﹣ABCD的高,且,E、F分別是BC、AP的中點.
(1)求證:EF∥平面PCD;
(2)求三棱錐F﹣PCD的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,AB是圓的直徑,PA垂直圓所在的平面,C是圓周上的一點.
(1)求證:平面PAC⊥平面PBC;(6分)
(2)若AB=2,AC=1,PA=1,求二面角CPBA的余弦值.(6分)
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,幾何體中,四邊形
為菱形,
,
,面
∥面
,
、
、
都垂直于面
,且
,
為
的中點,
為
的中點.
(1)求幾何體的體積;
(2)求證:為等腰直角三角形;
(3)求二面角的大小.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com