【題目】已知函數
討論函數
的單調性;
設
,對任意
的恒成立,求整數
的最大值.
【答案】(1)答案不唯一,具體見解析(2)整數的最大值-2
【解析】
(1)根據的取值范圍,分類討論
的單調性;
(2)先考慮特殊情況:,然后分析
,借助
的單調性以及恒成立對應的最值得到關于
的不等式,構建新函數分析新函數的零點與
之間的關系,從而求解出
的最大整數值.
(1)因為,所以
,
當 時,
,
在
上單調遞增,
當時,
,
在
上單調遞增,
當時,令
,解得:
,令
,解得:
,
所以在
上遞增,在
上遞減,
綜上可知:當時,
在
上單調遞增;當
時,
在
上遞增,在
上遞減;
(2)當時,則
,不滿足
恒成立.
若,由(1)可知,函數
在
上遞增,在
遞減.
所以,
又因為恒成立,所以
恒成立,
令,所以
,所以
在
上遞增,
又因為,
,
所以存在唯一的使
,
當時,
,當
時,
,
所以,所以
且
,
又因為,所以
,
所以整數的最大值為
.
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的右焦點為
,過點
的直線(不與
軸重合)與橢圓
相交于
,
兩點,直線
:
與
軸相交于點
,過點
作
,垂足為D.
(1)求四邊形(
為坐標原點)面積的取值范圍;
(2)證明直線過定點
,并求出點
的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知2件次品和3件正品混放在一起,現需要通過檢測將其區分,每次隨機檢測一件產品,檢測后不放回,直到檢測出2件次品或者檢測出3件正品時檢測結束.
(Ⅰ)求第一次檢測出的是次品且第二次檢測出的是正品的概率;
(Ⅱ)已知每檢測一件產品需要費用100元,設表示直到檢測出2件次品或者檢測出3件正品時所需要的檢測費用(單位:元),求
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(12分)若數列{an}是的遞增等差數列,其中的a3=5,且a1,a2,a5成等比數列,
(1)求{an}的通項公式;
(2)設bn= ,求數列{bn}的前項的和Tn.
(3)是否存在自然數m,使得 <Tn<
對一切n∈N*恒成立?若存在,求出m的值;
若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的左、右焦點分別為
,右頂點為
,且
過點
,圓
是以線段
為直徑的圓,經過點
且傾斜角為
的直線與圓
相切.
(1)求橢圓及圓
的方程;
(2)是否存在直線,使得直線
與圓
相切,與橢圓
交于
兩點,且滿足
?若存在,請求出直線
的方程,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在正方體中,點
在線段
上移動,有下列判斷:①平面
平面
;②平面
平面
;③三棱錐
的體積不變;④
平面
.其中,正確的是______.(把所有正確的判斷的序號都填上)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓,
是它的上頂點,點
各不相同且均在橢圓上.
(1)若恰為橢圓長軸的兩個端點,求
的面積;
(2)若,求證:直線
過一定點;
(3)若,
的外接圓半徑為
,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com