【題目】我國古代數學名著《續古摘奇算法》(楊輝)一書中有關于三階幻方的問題:將1,2,3,4,5,6,7,8,9分別填入的方格中,使得每一行,每一列及對角線上的三個數的和都相等,我們規定:只要兩個幻方的對應位置(如每行第一列的方格)中的數字不全相同,就稱為不同的幻方,那么所有不同的三階幻方的個數是( )
8 | 3 | 4 |
1 | 5 | 9 |
6 | 7 | 2 |
A. 9 B. 8 C. 6 D. 4
科目:高中數學 來源: 題型:
【題目】已知拋物線的方程
為拋物線
上一點,
為拋物線的焦點.
(I)求;
(II)設直線與拋物線
有唯一公共點
,且與直線
相交于點
,試問,在坐標平面內是否存在點
,使得以
為直徑的圓恒過點
?若存在,求出點
的坐標,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某大學藝術專業400名學生參加某次測評,根據男女學生人數比例,使用分層抽樣的方法從中隨機抽取了100名學生,記錄他們的分數,將數據分成7組:,
,…,
,并整理得到如下頻率分布直方圖:
(1)從總體的400名學生中隨機抽取一人,估計其分數小于70的概率;
(2)已知樣本中分數小于40的學生有5人,試估計總體中分數在區間內的人數;
(3)已知樣本中有一半男生的分數不小于70,且樣本中分數不小于70的男女生人數相等,試估計總體中男生和女生人數的比例.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點是橢圓
上任一點,點
到直線
的距離為
,到點
的距離為
,且
.直線
與橢圓
交于不同兩點
(
都在
軸上方),且
.
(1)求橢圓的方程;
(2)當為橢圓與
軸正半軸的交點時,求直線
方程;
(3)對于動直線,是否存在一個定點,無論
如何變化,直線
總經過此定點?若存在,求出該定點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線
(1)若,過點
的直線
交曲線
于
兩點,且
,求直線
的方程;
(2)若曲線表示圓時,已知圓
與圓
交于
兩點,若弦
所在的直線方程為
,
為圓
的直徑,且圓
過原點,求實數
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】4個男生,3個女生站成一排.(必須寫出算式再算出結果才得分)
(Ⅰ)3個女生必須排在一起,有多少種不同的排法?
(Ⅱ)任何兩個女生彼此不相鄰,有多少種不同的排法?
(Ⅲ)甲乙二人之間恰好有三個人,有多少種不同的排法?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com