日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

【題目】如圖, 是邊長為的正方形, 平面 平面 .

(Ⅰ)求證:

(Ⅱ)求三棱錐的體積.

【答案】(Ⅰ)見解析;(Ⅱ) .

【解析】試題分析:先證明結合,根據線面垂直的判定定理可得平面從而可得結論;先根據勾股定理求底面三角形的三邊的長,進而根據其特性求底面三角形的面積,再根據棱錐的體積公式求解即可.

試題解析:(Ⅰ)證明:連接

因為是正方形,所以.

因為平面 平面

所以.

因為,所以平面.

因為平面 平面,所以.

所以 四點共面.

因為平面,所以.

(Ⅱ)設,連接 .

由(Ⅰ)知, 平面

所以平面.

因為平面將三棱錐分為兩個三棱錐

所以.

因為正方形的邊長為

所以 .

的中點,連接,則 .

所以等腰三角形的面積為 .

所以

.

所以三棱錐的體積為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】團購已成為時下商家和顧客均非常青睞的一種省錢、高校的消費方式,不少商家同時加入多家團購網.現恰有三個團購網站在市開展了團購業務, 市某調查公司為調查這三家團購網站在本市的開展情況,從本市已加入了團購網站的商家中隨機地抽取了50家進行調查,他們加入這三家團購網站的情況如下圖所示.

(1)從所調查的50家商家中任選兩家,求他們加入團購網站的數量不相等的概率;

(2)從所調查的50家商家中任取兩家,用表示這兩家商家參加的團購網站數量之差的絕對值,求隨機變量的分布列和數學期望;

(3)將頻率視為概率,現從市隨機抽取3家已加入團購網站的商家,記其中恰好加入了兩個團購網站的商家數為,試求事件“”的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若函數g(x)=asinxcosx(a>0)的最大值為 ,則函數f(x)=sinx+acosx的圖象的一條對稱軸方程為(
A.x=0
B.x=﹣
C.x=﹣
D.x=﹣

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為推行“新課堂”教學法,某化學老師分別用傳統教學和“新課堂”兩種不同的教學方式,在甲、乙兩個班級中進行教學實驗,為了比較教學效果,期中考試后,分別從兩個班級中各隨機抽取20名學生的成績進行統計,作出的莖葉圖如下圖,記成績不低于70分者為“成績優良”.

(1)分別計算甲、乙兩班20個樣本中,化學分數前十的平均分,并大致判斷哪種教學方式的教學效果更佳;

(2)由以上統計數據填寫下面列聯表,并判斷能否在犯錯誤的概率不超過0.05的前提下認為“成績優良與教學方式有關”?

附:參考公式: ,其中

臨界值表:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了得到函數y=3sin(2x+ )的圖象,只要把函數y=3sinx的圖象上所有的點(
A.橫坐標縮短到原來的 倍(縱坐標不變),再把所得圖象所有的點向左平移 個單位長度
B.橫坐標伸長到原來的2倍(縱坐標不變),再把所得圖象所有的點向左平移 個單位長度
C.向右平移 個單位長度,再把所得圖象所有的點橫坐標縮短到原來的 倍(縱坐標不變)
D.向左平移 個單位長度,再把所得圖象所有的點橫坐標伸長到原來的2倍(縱坐標不變)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知 ,且cos(α﹣β)= ,sin(α+β)=﹣ ,求:cos2α的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓是大于的常數)的左、右頂點分別為,點是橢圓上位于軸上方的動點,直線與直線分別交于兩點(設直線的斜率為正數).

Ⅰ)設直線的斜率分別為 ,求證為定值.

Ⅱ)求線段的長度的最小值.

Ⅲ)判斷存在點,使得是等邊三角形的什么條件?(直接寫出結果)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】每年的4月23日為世界讀書日,為調查某高校學生(學生很多)的讀書情況,隨機抽取了男生,女生各20人組成的一個樣本,對他們的年閱讀量(單位:本)進行了統計,分析得到了男生年閱讀量的頻數分布表和女生年閱讀量的頻率分布直方圖.

男生年閱讀量的頻數分布表(年閱讀量均在區間內)

(Ⅰ)根據女生年閱讀量的頻率分布直方圖估計該校女生年閱讀量的中位數;

(Ⅱ)若年不小于40本為閱讀豐富,否則為閱讀不豐富,依據上述樣本研究年閱讀量與性別的關系,完成下列列聯表,并判斷是否有99%的把握認為閱讀豐富與性別有關;

(Ⅲ)在樣本中,從年閱讀量在的學生中,隨機抽取2人參加全市的征文比賽,記這2人中男生人數為,求的分布列和期望.

附: ,其中

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}是等差數列,Sn為{an}的前n項和,且a10=19,S10=100;數列{bn}對任意n∈N* , 總有b1b2b3…bn1bn=an+2成立.
(1)求數列{an}和{bn}的通項公式;
(2)記cn=(﹣1)n ,求數列{cn}的前n項和Tn

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 男女羞羞视频免费看 | 亚洲精品乱码8久久久久久日本 | 毛片一区二区三区 | 精品久久久成人 | www.中文字幕在线 | 99免费在线观看视频 | 狠狠操中文字幕 | www.日韩精品.com | 日韩成人三级 | 欧美日韩国产成人 | 九九九九九九精品 | 欧美一区二区免费 | 99久久99久久精品免费看蜜桃 | 在线中文av| 国产一区二区精品 | 精久久久久久 | 日韩在线观看视频免费 | 男女网站 | 久久久久9999亚洲精品 | 国产高清精品一区 | 欧美成人在线影院 | 免费成人精品 | 免费黄色毛片网站 | 国产一区二区影院 | 欧美精品一区二区三区在线播放 | 亚洲无吗天堂 | 国产一区免费在线观看 | 国产伦精品一区二区三区在线 | 超碰97人人爱 | 呦呦av在线 | 日本欧美在线观看 | 亚洲一区二区三 | 爱爱视频在线观看 | 午夜亚洲 | 亚洲一区二区中文字幕 | 久久新 | 第一福利丝瓜av导航 | 久久99精品久久久久子伦 | 成人午夜精品一区二区三区 | 欧美激情精品一区 | 黄色网址视频在线观看 |