【題目】若函數g(x)=asinxcosx(a>0)的最大值為 ,則函數f(x)=sinx+acosx的圖象的一條對稱軸方程為( )
A.x=0
B.x=﹣
C.x=﹣
D.x=﹣
科目:高中數學 來源: 題型:
【題目】若存在實數和
,使得函數
和
對定義域內的任意
均滿足:
,且存在
使得
,存在
使得
,則稱直線
為函數
和
的“分界線”.在下列說法中正確的是__________(寫出所有正確命題的編號).
①任意兩個一次函數最多存在一條“分界線”;
②“分界線”存在的兩個函數的圖象最多只有兩個交點;
③與
的“分界線”是
;
④與
的“分界線”是
或
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在測試中,客觀題難度的計算公式為,其中
為第
題的難度,
為答對該題的人數,
為參加測試的總人數.現對某校高三年級240名學生進行一次測試,共5道客觀題,測試前根據對學生的了解,預估了每道題的難度,如表所示:
題號 | 1 | 2 | 3 | 4 | 5 |
考前預估難度 | 0.9 | 0.8 | 0.7 | 0.6 | 0.4 |
測試后,從中隨機抽取了20名學生的答題數據進行統計,結果如表:
(Ⅰ)根據題中數據,估計中240名學生中第5題的實測答對人數;
(Ⅱ)從抽樣的20名學生中隨機抽取2名學生,記這2名學生中第5題答對的人數為,求
的分布列和數學期望;
(Ⅲ)試題的預估難度和實測難度之間會有偏差.設為第
題的實測難度,請用
和
設計一個統計量,并制定一個標準來判斷本次測試對難度的預估是否合理.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=a(2cos2 +sinx)+b
(1)若a=﹣1,求f(x)的單調增區間;
(2)若x∈[0,π]時,f(x)的值域是[5,8],求a,b的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知正方體,點
,
,
分別是線段
,
和
上的動點,觀察直線
與
,
與
.給出下列結論:
①對于任意給定的點,存在點
,使得
;
②對于任意給定的點,存在點
,使得
;
③對于任意給定的點,存在點
,使得
;
④對于任意給定的點,存在點
,使得
.
其中正確結論的個數是( ).
A. 個 B.
個 C.
個 D.
個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的首項a1=3,通項an與前n項和Sn之間滿足2an=SnSn﹣1(n≥2).
(1)求證 是等差數列,并求公差;
(2)求數列{an}的通項公式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司的廣告費支出x與銷售額y(單位:萬元)之間有下列對應數據
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
回歸方程為 =bx+a,其中b=
,a=
﹣b
.
(1)畫出散點圖,并判斷廣告費與銷售額是否具有相關關系;
(2)根據表中提供的數據,求出y與x的回歸方程 =bx+a;
(3)預測銷售額為115萬元時,大約需要多少萬元廣告費.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com