【題目】已知,
,
.
(1)若,證明:
;
(2)對任意,都有
,求整數
的最大值.
【答案】(1)見解析(2)2
【解析】
(1)構造函數,利用二次求導可證明結論成立;
(2)利用時,不等式成立以及(1)的結論,可得
,從而只需證明
在區間
恒成立即可.再根據(1)的結論,轉化為證明
在
上恒成立.利用導數即可證明,由此可得結果.
(1)設,則
,
因為,且
,
則在
單調遞減,因為
,
,
所以存在唯一零點,使得
,
所以時,
,
時,
,
則在
時單調遞增,在
上單調遞減,
又,
,
所以在
上恒成立,所以
在
上單調遞增,
則,即
.
所以.
(2)因為對任意的,不等式
,
即恒成立,
令,則
,
由(1)知,所以
,
由于為滿足
的整數,則
,
因此.
下面證明在區間
恒成立即可.
由(1)知,則
,
故,
設,
,則
,
所以在
上單調遞減,
所以,所以
在
上恒成立.
綜上所述,的最大值為2.
科目:高中數學 來源: 題型:
【題目】改革開放40年來,我國城市基礎設施發生了巨大的變化,各種交通工具大大方便了人們的出行需求.某城市的A先生實行的是早九晚五的工作時間,上班通常乘坐公交或地鐵加步行.已知從家到最近的公交站或地鐵站都需步行5分鐘,乘坐公交到離單位最近的公交站所需時間Z1(單位:分鐘)服從正態分布N(33,42),下車后步行再到單位需要12分鐘;乘坐地鐵到離單位最近的地鐵站所需時間Z2(單位:分鐘)服從正態分布N(44,22),從地鐵站步行到單位需要5分鐘.現有下列說法:①若8:00出門,則乘坐公交一定不會遲到;②若8:02出門,則乘坐公交和地鐵上班遲到的可能性相同;③若8:06出門,則乘坐公交比地鐵上班遲到的可能性大;④若8:12出門,則乘坐地鐵比公交上班遲到的可能性大.則以上說法中正確的序號是_____.
參考數據:若Z~N(μ,σ2),則P(μ﹣σ<Z≤μ+σ)=0.6826,P(μ﹣2σ<Z≤μ+2σ)=0.9544,P(μ﹣3σ<Z≤μ+3σ)=0.9974
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著網絡營銷和電子商務的興起,人們的購物方式更具多樣化,某調查機構隨機抽取10名購物者進行采訪,5名男性購物者中有3名傾向于選擇網購,2名傾向于選擇實體店,5名女性購物者中有2名傾向于選擇網購,3名傾向于選擇實體店.
(1)若從10名購物者中隨機抽取2名,其中男、女各一名,求至少1名傾向于選擇實體店的概率;
(2)若從這10名購物者中隨機抽取3名,設X表示抽到傾向于選擇網購的男性購物者的人數,求X的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線與函數
(
)的圖象相交,將其中三個相鄰交點從左到右依次記為A,B,C,且滿足
有下列結論:
①n的值可能為2
②當,且
時,
的圖象可能關于直線
對稱
③當時,有且僅有一個實數ω,使得
在
上單調遞增;
④不等式恒成立
其中所有正確結論的編號為( )
A.③B.①②C.②④D.③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校同時提供、
兩類線上選修課程,
類選修課每次觀看線上直播
分鐘,并完成課后作業
分鐘,可獲得積分
分;
類選修課每次觀看線上直播
分鐘,并完成課后作業
分鐘,可獲得積分
分.每周開設
次,共開設
周,每次均為獨立內容,每次只能選擇
類、
類課程中的一類學習.當選擇
類課程
次,
類課程
次時,可獲得總積分共_______分.如果規定學生觀看直播總時間不得少于
分鐘,課后作業總時間不得少于
分鐘,則通過線上選修課的學習,最多可以獲得總積分共________分.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知中,角
,
,
的對邊分別為
,
,
,
,
,________.是否存在以
,
,
為邊的三角形?如果存在,求出
的面積;若不存在,說明理由.
從①;②
;③
這三個條件中任選一個,補充在上面問題中并作答.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《九章算術》中有一題:今有牛、馬、羊食人苗,苗主責之粟四斗.羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問各出幾何?其意是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償4斗粟,羊主人說:“我羊所吃的禾苗只有馬的一半.”馬主人說:“我馬所吃的禾苗只有牛的一半.”打算按此比率償還,牛、馬、羊的主人各應賠償多少粟?在這個問題中,牛主人比羊主人多賠償了多少斗( )
A.B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com