【題目】若函數f(x)= 是奇函數,則使f(x)>3成立的x的取值范圍為( )
A.(-∞,-1)
B.(-1,0)
C.(0,1)
D.(1,+∞)
科目:高中數學 來源: 題型:
【題目】三國時代吳國數學家趙爽所注《周髀算經》中給出了勾股定理的絕妙證明,下面是趙爽的弦圖及注文,弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實,圖中包含四個全等的勾股形及一個小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實,黃實,利用2×勾×股+(股﹣勾)2=4×朱實+黃實=弦實,化簡,得勾2+股2=弦2 , 設勾股中勾股比為1: ,若向弦圖內隨機拋擲1000顆圖釘(大小忽略不計),則落在黃色圖形內的圖釘數大約為( )
A.866
B.500
C.300
D.134
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在極坐標系下,知圓O:ρ=cosθ+sinθ和直線 .
(1)求圓O與直線l的直角坐標方程;
(2)當θ∈(0,π)時,求圓O和直線l的公共點的極坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓 :
的離心率為
,且以兩焦點為直徑的圓的內接正方形面積為2.
(1)求橢圓 的標準方程;
(2)若直線 :
與橢圓
相交于
,
兩點,在
軸上是否存在點
,使直線
與
的斜率之和
為定值?若存在,求出點
坐標及該定值,若不存在,試說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=a·2x+b·3x , 其中常數a,b滿足ab≠0.
(1)若ab>0,判斷函數f(x)的單調性;
(2)若ab<0,求f(x+1)>f(x)時x的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,正方體 的棱長為1,
分別是棱
的中點,過
的平面與棱
分別交于點
.設
,
.
①四邊形 一定是菱形;②
平面
;③四邊形
的面積
在區間
上具有單調性;④四棱錐
的體積為定值.
以上結論正確的個數是( )
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設拋物線 的焦點為
,準線為
,點
在拋物線
上,已知以點
為圓心,
為半徑的圓
交
于
兩點.
(Ⅰ)若 ,
的面積為4,求拋物線
的方程;
(Ⅱ)若 三點在同一條直線
上,直線
與
平行,且
與拋物線
只有一個公共點,求直線
的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com