【題目】對函數f(x),如果存在x0≠0使得f(x0)=﹣f(﹣x0),則稱(x0 , f(x0))與(﹣x0 , f(﹣x0))為函數圖象的一組奇對稱點.若f(x)=ex﹣a(e為自然數的底數)存在奇對稱點,則實數a的取值范圍是( )
A.(﹣∞,1)
B.(1,+∞)
C.(e,+∞)
D.[1,+∞)
科目:高中數學 來源: 題型:
【題目】已知函數g(x)=a﹣x2( ≤x≤e,e為自然對數的底數)與h(x)=2lnx的圖像上存在關于x軸對稱的點,則實數a的取值范圍是( )
A.[1, +2]
B.[1,e2﹣2]
C.[ +2,e2﹣2]
D.[e2﹣2,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知O為坐標原點,F是橢圓C: +
=1(a>b>0)的左焦點,A,B分別為C的左,右頂點.P為C上一點,且PF⊥x軸,過點A的直線l與線段PF交于點M,與y軸交于點E.若直線BM經過OE的中點,則C的離心率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓O:x2+y2=1過橢圓C: (a>b>0)的短軸端點,P,Q分別是圓O與橢圓C上任意兩點,且線段PQ長度的最大值為3. (Ⅰ)求橢圓C的方程;
(Ⅱ)過點(0,t)作圓O的一條切線交橢圓C于M,N兩點,求△OMN的面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某超市從現有甲、乙兩種酸奶的日銷售量(單位:箱)的1200個數據(數據均在區間(0,50]內)中,按照5%的比例進行分層抽樣,統計結果按(0,10],(10,20],(20,30],(30,40],(40,50]分組,整理如下圖:
(Ⅰ)寫出頻率分布直方圖(圖乙)中a的值;記所抽取樣本中甲種酸奶與乙種酸奶日銷售量的方差分別為 ,
,試比較
與
的大小(只需寫出結論);
(Ⅱ)從甲種酸奶日銷售量在區間(0,20]的數據樣本中抽取3個,記在(0,10]內的數據個數為X,求X的分布列;
(Ⅲ)估計1200個日銷售量數據中,數據在區間(0,10]中的個數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校計劃面向高一年級1200名學生開設校本選修課程,為確保工作的順利實施,先按性別進行分層抽樣,抽取了180名學生對社會科學類,自然科學類這兩大類校本選修課程進行選課意向調查,其中男生有105人.在這180名學生中選擇社會科學類的男生、女生均為45人.
(Ⅰ)分別計算抽取的樣本中男生及女生選擇社會科學類的頻率,并以統計的頻率作為概率,估計實際選課中選擇社會科學類學生數;
(Ⅱ)根據抽取的180名學生的調查結果,完成下列列聯表.并判斷能否在犯錯誤的概率不超過0.025的前提下認為科類的選擇與性別有關?
選擇自然科學類 | 選擇社會科學類 | 合計 | |
男生 | |||
女生 | |||
合計 |
附: ,其中n=a+b+c+d.
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
K0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義在[0,1]上的函數f(x)滿足:
①f(0)=f(1)=0;
②對所有x,y∈[0,1],且x≠y,有|f(x)﹣f(y)|< |x﹣y|.
若對所有x,y∈[0,1],|f(x)﹣f(y)|<m恒成立,則m的最小值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】工人月工資y(元)與勞動生產率x(千元)變化的回歸方程 , 下列判斷正確的是 ( )
①勞動生產率為1千元時,工資約為130元
②勞動生產率提高1千元時,月工資約提高80元
③勞動生產率提高1千元時,月工資約提高130元
④當月工資為210元時,勞動生產率約為2千元
A.① ②
B.① ② ④
C.② ④
D.① ② ③ ④
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com