日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

【題目】如下圖所示,在三棱錐PABC中,PA⊥底面ABCPAAB,∠ABC=60°,∠BCA=90°,點D,E分別在棱PB,PC上,且DEBC.

(1)求證:BC⊥平面PAC;

(2)當DPB的中點時,求AD與平面PAC所成的角的正弦值;

(3)是否存在點E,使得二面角ADEP為直二面角?并說明理由.

【答案】(1)見證明;(2) (3)見解析

【解析】

建立如圖所示的空間直角坐標系,(1)通過證明,再結(jié)合即可得結(jié)論;(2)結(jié)合(1)中的結(jié)論進一步說明與平面所成的角,先通過向量夾角公式求出余弦值,再求正弦值;(3)由已知條件推導(dǎo)出為二面角的平面角,由此能推導(dǎo)出存在點使得二面角是直二面角.

A為原點,分別為y軸、z軸的正方向,

A點且垂直于平面PAB的直線為x軸,建立空間直角坐標系,

設(shè)PAa,由已知可得:A(0,0,0),B(0,a,0),CP(0,0,a).

(1)=(0,0,a),,∴=0,∴,∴BCAP,

又∵∠BCA=90°,∴BCAC,∴BC⊥平面PAC.

(2)∵DPB的中點,DEBC,∴EPC的中點,

D,E

∴由(1)知,BC⊥平面PAC,∴DE⊥平面PAC,垂足為點E,

∴∠DAEAD與平面PAC所成的角,

,,∴cos∠DAE

AD與平面PAC所成的角的正弦值為.

(3)∵DEBC,又由(1)知BC⊥平面PAC,∴DE⊥平面PAC

又∵AE平面PAC,PE平面PAC,

DEAE,DEPE,∴∠AEP為二面角ADEP的平面角.

PA⊥底面ABC,∴PAAC,∴∠PAC=90°,

∴在棱PC上存在一點E,使得AEPC,這時∠AEP=90°,

故存在點E,使得二面角ADEP是直二面角.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 ,直線 為參數(shù)).

(1)寫出橢圓的參數(shù)方程及直線的普通方程;

(2)設(shè),若橢圓上的點滿足到點的距離與其到直線的距離相等,求點的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了研究某種微生物的生長規(guī)律,研究小組在實驗室對該種微生物進行培育實驗.前三天觀測的該微生物的群落單位數(shù)量分別為12,1624.根據(jù)實驗數(shù)據(jù),用y表示第天的群落單位數(shù)量,某研究員提出了兩種函數(shù)模型;;,其中a,b,c,pq,r都是常數(shù).

1)根據(jù)實驗數(shù)據(jù),分別求出這兩種函數(shù)模型的解析式;

2)若第4天和第5天觀測的群落單位數(shù)量分別為4072,請從這兩個函數(shù)模型中選出更合適的一個,并計算從第幾天開始該微生物群落的單位數(shù)量超過1000

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知直線的參數(shù)方程是是參數(shù)),圓的極坐標方程為.

(Ⅰ)求圓心的直角坐標;

(Ⅱ)由直線上的點向圓引切線,求切線長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2x.

(1)判斷函數(shù)的奇偶性,并證明;

(2)用單調(diào)性的定義證明函數(shù)f(x)=2x在(0,+∞)上單調(diào)遞增.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在幾何體中,四邊形是邊長為2的菱形,平面,平面,, .

(1)當長為多少時,平面平面

(2)在(1)的條件下,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的頂點為平面直角坐標系的坐標原點,焦點為圓的圓心.經(jīng)過點的直線交拋物線兩點,交圓兩點,在第一象限,在第四象限.

(1)求拋物線的方程;

(2)是否存在直線使的等差中項?若存在,求直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,AB=2AD,為DC的中點,將△ADM沿AM折起使平面ADM⊥平面ABCM.

(1)當AB=2時,求三棱錐的體積;

(2)求證:BM⊥AD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,分別為橢圓的左、右焦點,且.

(1)求橢圓的方程;

(2)設(shè)為橢圓上任意一點,以為圓心,為半徑作圓,當圓與直線有公共點時,求面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 国产亚洲成av人片在线观看 | 日本在线免费观看 | 一区不卡在线观看 | 国产精品一区二区久久 | 一区二区免费视频观看 | 中文在线一区二区 | 国产高清久久久 | 欧美午夜视频 | 精品一区二区三区久久 | 一级黄色av片 | 亚洲综合一区二区三区 | 欧美同性大尺度腐剧 | 久久精品一区 | 欧美一级二级视频 | 范冰冰一级做a爰片久久毛片 | 中文av在线免费观看 | 成人免费视频 | 日韩免费 | 免费小毛片 | 网站一区二区三区 | 91久久综合 | 亚洲区在线 | 日本高清中文字幕 | 日韩中文一区二区三区 | 北条麻妃一区二区三区在线观看 | 日韩在线观看中文字幕 | mm1313亚洲国产精品美女 | 激情欧美一区二区三区中文字幕 | 国产精品视频免费观看 | 国产欧美一区二区精品性色 | 久久免费精品视频 | 操人网 | 国产精品久久久999 日本在线免费观看 | 在线免费观看av片 | 久久久亚洲一区 | 国内久久精品 | 中文字幕黄色 | 91久久久久久 | 久久精品一级 | 涩爱网 | 91亚洲狠狠婷婷综合久久久 |