【題目】下列各點中,在不等式表示的平面區域內的是( )
A. B.
C.
D.
【答案】C
【解析】
根據題意,依次將選項中點的坐標代入不等式2x+y﹣6≤0,驗證其是否成立,若成立,則
在不等式表示的平面區域內,否則不在,綜合即可得答案.
根據題意,依次分析選項:
對于A,將(0,7)代入不等式2x+y﹣6≤0,可得7﹣6≤0,不等式不成立,點(0,7)不
在不等式2x+y﹣6≤0表示的平面區域內,A錯誤;
對于B,將(5,0)代入不等式2x+y﹣6≤0,可得10﹣6≤0,不等式不成立,點(5,0)
不在不等式2x+y﹣6≤0表示的平面區域內,B錯誤;
對于C,將(0,6)代入不等式2x+y﹣6≤0,可得6﹣6≤0,不等式成立,點(0,6)在不
等式2x+y﹣6≤0表示的平面區域內,C正確;
對于D,將(2,3)代入不等式2x+y﹣6≤0,可得7﹣6≤0,不等式不成立,點(2,3)不
在不等式2x+y﹣6≤0表示的平面區域內,D錯誤;
故選:C.
科目:高中數學 來源: 題型:
【題目】在三棱錐S-ABC中,△ABC是邊長為6的正三角形,SA=SB=SC=15,平面DEFH分別與AB,BC,SC,SA交于點D,E,F,H.且D,E分別是AB,BC的中點,如果直線SB∥平面DEFH,那么四邊形DEFH的面積為________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個袋中裝有四個形狀大小完全相同的編號為1,2,3,4的球,從袋中隨機抽取一個球,將其編號記為m,然后從袋中余下的三個球中再隨機抽取一個球,將其編號記為n,則關于x的一元二次方程無實根的概率為__________。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某大學在開學季準備銷售一種盒飯進行試創業,在一個開學季內,每售出1盒該盒飯獲利潤10元,未售出的產品,每盒虧損5元.根據歷史資料,得到開學季市場需求量的頻率分布直方圖,如圖所示.該同學為這個開學季購進了150盒該產品,以x(單位:盒,)表示這個開學季內的市場需求量,y(單位:元)表示這個開學季內經銷該產品的利潤.
(1)根據直方圖估計這個開學季內市場需求量x的平均數和眾數;
(2)將y表示為x的函數;
(3)根據頻率分布直方圖估計利潤y不少于1050元的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公交公司分別推出支付寶和微信掃碼支付乘車活動,活動設置了一段時間的推廣期,由于推廣期內優惠力度較大,吸引越來越多的人開始使用掃碼支付.某線路公交車隊統計了活動剛推出一周內每一天使用掃碼支付的人次,用x表示活動推出的天數,y表示每天使用掃碼支付的人次(單位:十人次),統計數據如表所示:
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
y | 6 | 11 | 21 | 34 | 66 | 101 | 196 |
根據以上數據,繪制了散點圖.
(1)根據散點圖判斷,在推廣期內,與
(
,
均為大于零的常數)哪一個適宜作為掃碼支付的人次
關于活動推出天數
的回歸方程類型?(給出判斷即可,不必說明理由);
(2)若y關于x的回歸方程不是線性的可通過換元方法把它化歸為線性回歸方程。例如:(a、b為常數,e為自然對數的底數),可以兩邊同時取自然對數
,再令
,先用最小二乘法求出
與x的線性回歸方程,再得出y與x的回歸方程。根據(1)的判斷結果及表1中的數據,求y關于x的回歸方程;
(3)由(2)中的歸方程預測活動推出第12天使用掃碼支付的人次。
參考數據:
66 | 1.54 | 2711 | 50.12 | 3.47 |
其中,參考公式:對于一組數據
,
,…,
,其回歸直線
的斜率和截距的最小二乘估計公式分別為:
,
。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知長方體AC1中,AD=AB=2,AA1=1,E為D1C1的中點,如圖所示.
(Ⅰ)在所給圖中畫出平面ABD1與平面B1EC的交線(不必說明理由);
(Ⅱ)證明:BD1∥平面B1EC;
(Ⅲ)求平面ABD1與平面B1EC所成銳二面角的大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左、右焦點為
,直線
過點
且垂直于橢圓的長軸,動直線
垂直
于點
,線段
的垂直平分線與
的交點的軌跡為曲線
,若
,且
是曲線
上不同的點,滿足
,則
的取值范圍為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知三棱柱A1B1C1﹣ABC中,側棱與底面垂直,AB=BC=AA1 , ∠ABC=90°,M是BC的中點.
(1)求證:A1B∥平面AMC1;
(2)求平面A1B1M與平面AMC1所成角的銳二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓+
=1(a>b>0)上的點P到左,右兩焦點F1,F2的距離之和為2
,離心率為
.
(1)求橢圓的標準方程;
(2)過右焦點F2的直線l交橢圓于A,B兩點,若y軸上一點M(0,)滿足|MA|=|MB|,求直線l的斜率k的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com