【題目】如圖,P是正四面體V-ABC的面VBC上一點,點P到平面ABC距離與到點V的距離相等,則動點P的軌跡是( )
A. 直線 B. 拋物線
C. 離心率為的橢圓 D. 離心率為3的雙曲線
【答案】C
【解析】分析:由題設條件將點P到平面ABC距離與到點V的距離相等轉化成在面VBC中點P到V的距離與到定直線BC的距離比是一個常數,依據圓錐曲線的第二定義判斷出其軌跡的形狀.
詳解:∵正四面體V﹣ABC∴面VBC不垂直面ABC,過P作PD⊥面ABC于D,過D作DH⊥BC于H,連接PH,
可得BC⊥面DPH,所以BC⊥PH,故∠PHD為二面角V﹣BC﹣A的平面角令其為θ
則Rt△PGH中,|PD|:|PH|=sinθ(θ為V﹣BC﹣A的二面角的大小).
又點P到平面ABC距離與到點V的距離相等,即|PV|=|PD|
∴|PV|:|PH|=sinθ<1,即在平面VBC中,點P到定點V的距離與定直線BC的距離之比是一個常數sinθ,
又在正四面體V﹣ABC,V﹣BC﹣A的二面角的大小θ有:sinθ=<1,
由橢圓定義知P點軌跡為橢圓在面SBC內的一部分.
故答案為:C.
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和為Sn , 且對任意正整數n,都有an= +2成立.
(1)記bn=log2an , 求數列{bn}的通項公式;
(2)設cn= ,求數列{cn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,x∈(b﹣3,2b)是奇函數,
(1)求a,b的值;
(2)若f(x)是區間(b﹣3,2b)上的減函數且f(m﹣1)+f(2m+1)>0,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,且過點
.
(1)求橢圓的方程;
(2)若過點且斜率為k的直線l與橢圓相交于不同的兩點A,B,試問在x軸上是否存在點
,使
是與
無關的常數?若存在,求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,底面△ABC是邊長為2的等邊三角形,D為AB中點.
(1)求證:BC1∥平面A1CD;
(2)若四邊形BCC1B1是正方形,且A1D= ,求直線A1D與平面CBB1C1所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C:(x﹣1)2+y2=r2(r>0)與直線l:y=x+3,且直線l有唯一的一個點P,使得過P點作圓C的兩條切線互相垂直,則r=;設EF是直線l上的一條線段,若對于圓C上的任意一點Q,∠EQF≥ ,則|EF|的最小值= .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com