【題目】以為直徑的圓
經過
、
兩點,延長
、
交于
點,將
沿線段
折起,使
點在底面
的射影恰好為
的中點
.若
,
,線段
、
的中點分別為
.
(1)判斷四點是否共面,并說明理由;
(2)求四棱錐的體積.
【答案】(1)四點不共面.(2)
【解析】試題分析:(1)證明四點不共面,基本方法為反證法,即假設四點共面,則由線線平行得到線面平行
平面
,再由線面平行得到線線平行
,與條件相交矛盾,反設不成立,得到結論,(2)求四棱錐的體積,關鍵在于求高,而高的尋求往往借助于線面垂直關系得到,本題根據面面垂直性質定理得到線面垂直,
,所以
為四棱錐
的高,再代入體積公式即可.
試題解析:(1)假設四點共面,因為
,
平面
,所以
平面
,
又因為平面
平面
,
平面
, 所以
,與已知
矛盾,所以四點
不共面.
(2)由題意,又
,
于
,
所以平面
所以平面平面
,
點在底面
的射影恰為
的中點
,所以
,所以
為四棱錐
的高,
,
∴,
,∴
∴,
,
,線段
的中點為
,
所以點到平面
的高為
連接, 所以
,
,
科目:高中數學 來源: 題型:
【題目】已知為
上的偶函數,當
時,
.對于結論
(1)當時,
;(2)函數
的零點個數可以為4,5,7;
(3)若,關于
的方程
有5個不同的實根,則
;
(4)若函數在區間
上恒為正,則實數
的范圍是
.
說法正確的序號是__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】古希臘人常用小石子在沙灘上擺成各種形狀來研究數.比如:
他們研究過圖1中的1,3,6,10,…,由于這些數能夠表示成三角形,將其稱為三角形數;類似的,稱圖2中的1,4,9,16,…這樣的數為正方形數.下列數中既是三角形數又是正方形數的是( )
A. 36 B. 45 C. 99 D. 100
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)=x2-2x-3,求f(3),f(-5),f(5),并計算f(3)+f(-5)+f(5)的值.設計出解決該問題的一個算法,并畫出程框圖.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】滬昆高速鐵路全線2016年12月28日開通運營.途經鷹潭北站的、
兩列列車乘務組工作人員為了了解乘坐本次列車的乘客每月需求情況,分別在兩個車次各隨機抽取了100名旅客進行調查,下面是根據調查結果,繪制了月乘車次數的頻率分布直方圖和頻數分布表.
(1)若將頻率視為概率,月乘車次數不低于15次的稱之為“老乘客”,試問:哪一車次的“老乘客”較多,簡要說明理由;
(2)已知在次列車隨機抽到的50歲以上人員有35名,其中有10名是“老乘客”,由條件完成
列聯表,并根據資料判斷,是否有
的把握認為年齡與乘車次數有關,說明理由.
老乘客 | 新乘客 | 合計 | |||||||
50歲以上 | |||||||||
50歲以下 | |||||||||
合計 | |||||||||
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |||||
1.323 | 2.072 | 2.706 | 3.841 | 5.024 | |||||
附:隨機變量(其中
為樣本容量)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2+ (x≠0,a∈R).
(1)判斷函數f(x)的奇偶性;
(2)若f(x)在區間[2,+∞)上是增函數,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學將100名高二文科生分成水平相同的甲、乙兩個“平行班”,每班50人.陳老師采用A,B兩種不同的教學方式分別在甲、乙兩個班進行教改實驗.為了了解教學效果,期末考試后,陳老師對甲、乙兩個班級的學生成績進行統計分析,畫出頻率分布直方圖(如下圖).記成績不低于90分者為“成績優秀”.
(Ⅰ)根據頻率分布直方圖填寫下面2×2列聯表;
(Ⅱ)判斷能否在犯錯誤的概率不超過0.05的前提下認為:“成績優秀”與教學方式有關?
甲班(A方式) | 乙班(B方式) | 總計 | |
成績優秀 | |||
成績不優秀 | |||
總計 |
附:.
P(K2≥k) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com