日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

【題目】如圖,正三棱柱ABC﹣A1B1C1的所有棱長都為2,D為CC1中點.試用空間向量知識解下列問題:

(1)求證:平面ABB1A1⊥平面A1BD;
(2)求二面角A﹣A1D﹣B的大小.

【答案】
(1)證明:取BC中點O,連AO,∵△ABC為正三角形,

∴AO⊥BC,

∵在正三棱柱ABC﹣A1B1C1中,

平面ABC⊥平面BCC1B1

∴AD⊥平面BCC1B1

取B1C1中點為O1,以O為原點,

的方向為x,y,z軸的正方向,

建立空間直角坐標系,

,∴AB1⊥面A1BD.…(5分)

AA1面A1BD

所以 平面ABB1A1⊥面A1BD


(2)解:設平面A1AD的法向量為

,∴ ,∴

令z=1,得 為平面A1AD的一個法向量,

由(1)知AB1⊥面A1BD,

為平面A1AD的法向量,

∴二面角A﹣A1D﹣B的正弦值為 =


【解析】(1)取BC中點O,連AO,利用正三角形三線合一,及面面垂直的性質可得AO⊥平面BCB1C1 , 取B1C1中點為O1 , 以O為原點, 的方向為x,y,z軸的正方向,建立空間直角坐標系,求出AB1的方向向量,利用向量垂直的充要條件及線面垂直的判定定理可得AB1⊥平面A1BD,即可證明平面ABB1A1⊥平面A1BD;(2)分別求出平面A1AD的法向量和平面A1AD的一個法向量代入向量夾角公式,可得二面角A﹣A1D﹣B的余弦值大小.
【考點精析】通過靈活運用平面與平面垂直的判定,掌握一個平面過另一個平面的垂線,則這兩個平面垂直即可以解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數 .

(1)若直線是曲線與曲線的公切線,求

(2)設,若有兩個零點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在銳角三角形中,若,則的取值范圍是__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x2+2ax+2,x∈[﹣5,5].
(1)當a=﹣1時,求函數f(x)的最大值和最小值;
(2)當a∈R時,求函數f(x)的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,長方體ABCD﹣A1B1C1D1中,AA1= ,AB=1,AD=2,E為BC的中點,點M為棱AA1的中點.

(1)證明:DE⊥平面A1AE;
(2)證明:BM∥平面A1ED.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列命題:
①函數y=﹣ 在其定義域上是增函數;
②函數y= 是奇函數;
③函數y=log2(x﹣1)的圖象可由y=log2(x+1)的圖象向右平移2個單位得到;
④若( a=( b<1.則a<b<0
則下列正確命題的序號是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,內角A,B,C所對的邊分別為a,b,c.已知a﹣c= b,sinB= sinC.
(1)求cosA的值;
(2)求cos(A+ )的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設命題p:函數y=kx+1在R上是增函數,命題q:x∈R,x2+(2k﹣3)x+1=0,如果p∧q是假命題,p∨q是真命題,求k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在正方體ABCD﹣A1B1C1D1中,則異面直線AD1與A1C1所成角的余弦值是

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 青娱乐av| 免费福利在线 | 久久精品伊人 | 久久精品免费国产 | 久久草草影视免费网 | 美女被草视频网站 | 中文字幕一区二区三区免费视频 | 久久精品小视频 | 国产一区免费在线观看 | 91视频网址| 欧美色图首页 | 亚洲国产精品人人爽夜夜爽 | 日本国产精品视频 | 国产精品高潮呻吟久久久 | 国产日韩视频在线播放 | 国产九九精品 | 黄色污污在线观看 | 欧美日本高清 | 欧美精品一区二区三区一线天视频 | 国产视频一区二区 | 欧美人成在线 | 午夜午夜精品一区二区三区文 | 亚洲久悠悠色悠在线播放 | 欧美日韩在线播放 | 国产精品久久久久久久久久妞妞 | 国产精久久久久 | 在线a视频| 99免费观看视频 | 亚洲无吗视频 | 欧美日韩在线视频观看 | 亚洲久草 | 欧美日韩中文字幕 | 久久er99热精品一区二区 | 天天干天天搞天天射 | 成人在线免费观看视频 | 久久不色 | 亚洲一区成人 | 国产精品久久嫩一区二区免费 | 欧美精品一区在线 | 99热首页 | 久久国产一区二区三区 |