【題目】某研究性學習小組為了解學生每周用于體育鍛煉時間的情況,在甲、乙兩所學校隨機抽取了各50名學生,做問卷調查,并作出如下頻率分布直方圖:
(1)根據直方圖計算:兩所學校被抽取到的學生每周用于體育鍛煉時間的平均數;
(2)在這100名學生中,要從每周用于體育鍛煉時間不低于10小時的學生中選出3人,該3人中來自乙學校的學生數記為X,求X的分布列和數學期望.
【答案】
(1)解:由頻率分布直方圖得甲校被抽取到的學生每周用于體育鍛煉時間的平均數為:
=0.12×5.5+0.24×6.5+0.32×7.5+0.20×8.5+0.08×9.5+0.04×10.5=7.5.
乙校被抽取到的學生每周用于體育鍛煉時間的平均數為:
=0.08×5.5+0.24×6.5+0.28×7.5+0.24×8.5+0.08×9.5+0.08×10.5=7.74.
(2)解:每周體育鍛煉時間不低于10個小時的學生中,甲校有2人,乙校有4人,
X的所有可能取值有1,2,3,
P(X=1)= =
,
P(X=2)= =
,
P(X=3)= =
,
∴X的分布列為:
X | 1 | 2 | 3 |
P |
EX=
【解析】(1)由頻率分布直方圖能求出兩所學校被抽取到的學生每周用于體育鍛煉時間的平均數.(2)每周體育鍛煉時間不低于10個小時的學生中,甲校有2人,乙校有4人,X的所有可能取值有1,2,3,分別求出相應的概率,由此能求出X的分布列和EX.
【考點精析】掌握頻率分布直方圖和離散型隨機變量及其分布列是解答本題的根本,需要知道頻率分布表和頻率分布直方圖,是對相同數據的兩種不同表達方式.用緊湊的表格改變數據的排列方式和構成形式,可展示數據的分布情況.通過作圖既可以從數據中提取信息,又可以利用圖形傳遞信息;在射擊、產品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列.
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)若函數的值域為[0,+∞),求實數a的取值范圍;
(2)若關于x的不等式F(x)>af(x)+12恒成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某家庭進行理財投資,根據長期收益率市場預測,投資類產品的收益與投資額成正比,投資
類產品的收益與投資額的算術平方根成正比.已知投資1萬元時
兩類產品的收益分別為0.125萬元和0.5萬元.
(1)分別寫出兩類產品的收益與投資額的函數關系;
(2)該家庭有20萬元資金,全部用于理財投資,問:怎么分配資金能使投資獲得最大收益,其最大收益是多少萬元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在R上的奇函數f(x),當x≥0時,f(x)=,則關于x的函數F(x)=f(x)-a(0<a<1,a為常數)的所有零點之和為______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分7分)選修4-4:坐標系與參數方程
在平面直角坐標系中,直線
的參數方程為
為參數),P、Q分別為直線
與x軸、y軸的交點,線段PQ的中點為M.
(Ⅰ)求直線的直角坐標方程;
(Ⅱ)以坐標原點O為極點,軸的正半軸為極軸建立極坐標系,求點M的極坐標和直線OM的極坐標方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】菜農定期使用低害殺蟲農藥對蔬菜進行噴灑,以防止害蟲的危害,但蔬菜上市時蔬菜仍存有少量的殘留農藥,食用時需要用清水清洗干凈,下表是用清水(單位:千克)清洗蔬菜1千克后,蔬菜上殘留的農藥
(單位:微克)的統計表:
1 | 2 | 3 | 4 | 5 | |
58 | 54 | 39 | 29 | 10 |
(1)在答題紙的坐標系中,描出散點圖,并判斷變量與
是正相關還是負相關;
(2)若用解析式作為蔬菜農藥殘量
與用水量
的回歸方程,令
,計算平均值
與
,完成以下表格(填在答題卡中),求出
與
的回歸方程.(
,
保留兩位有效數字):
1 | 4 | 9 | 16 | 25 | |
58 | 54 | 39 | 29 | 10 | |
(3)對于某種殘留在蔬菜上的農藥,當它的殘留量低于20微克時對人體無害,為了放心食用該蔬菜,請評估需要用多少千克的清水清洗一千克蔬菜?(精確到0.1,參考數據)(附:對于一組數據
,
,……,
,其回歸直線
的斜率和截距的最小二乘法估計分別為:
,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】國家規定個人稿費繳納方法為:不超過800元的不納稅,超過800元而不超過4000元的按超過800元部分的14%納稅,超過4000元的按全部稿酬的11.2%納稅(本題中稿費均指納稅前稿費).
(Ⅰ)某人出了一本書,獲得30000元的個人稿費,則這個人需要納稅是多少元?
(Ⅱ)試建立某人所得稿費x元與納稅額y元的函數關系.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分別是AB、CD上的點,EF∥BC,AE =
,G是BC的中點。沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF.
(1)若以F、B、C、D為頂點的三棱錐的體積記為,求
的最大值;
(2)當 取得最大值時,求二面角D-BF-C的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com