已知橢圓:
的右焦點
在圓
上,直線
交橢圓于
、
兩點.
(1)求橢圓的方程;
(2)若(
為坐標原點),求
的值;
科目:高中數學 來源: 題型:
已知橢圓,的右焦點為F,上頂點為A,P為C1上任一點,圓心在y軸上的圓C2與斜率為
的直線
切于點B
,且AF∥
。
(1)求圓的方程及橢圓的離心率。
(2)過P作圓C2的切線PE,PG,若的最小值為
,求橢圓的方程。
查看答案和解析>>
科目:高中數學 來源:2012-2013學年江西省高三三模考試理科數學試卷(解析版) 題型:解答題
已知橢圓:
的右焦點
在圓
上,直線
交橢圓于
、
兩點.
(1)求橢圓的方程;
(2)若(
為坐標原點),求
的值;
(3)設點關于
軸的對稱點為
(
與
不重合),且直線
與
軸交于點
,試問
的面積是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源:2012-2013學年山東省高三第六次(4月)周測理科數學試卷(解析版) 題型:解答題
已知橢圓:
的右焦點
在圓
上,直線
交橢圓于
、
兩點.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 若OM⊥ON(為坐標原點),求
的值;
(Ⅲ) 設點
關于
軸的對稱點為
(
與
不重合),且直線
與
軸交于點
,試問
的面積是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
(本小題滿分13分)
已知橢圓:
的右焦點為F,離心率
,橢圓C上的點到F的距離的最大值為
,動點
,以OM為直徑的圓的圓心是
.
(I)求橢圓的方程C的方程.
(II)若點N在圓上,且
,過N作直徑OM的垂線NP,垂足為P,求證:直線NP恒過右焦點F.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com