(本小題滿分13分)
已知集合M是滿足下列性質的函數f(x)的全體:存在非零常數T,對任意x∈R,有f(x+T)=T·f(x)成立.
(1)函數f(x)= x 是否屬于集合M?說明理由;
(2)設函數f(x)=ax(a>0,且a≠1)的圖象與y=x的圖象有公共點,證明:f(x)=ax∈M;
(3)若函數f(x)=sinkx∈M ,求實數k的取值范圍.
(本小題滿分13分)
[解](1)對于非零常數T,f(x+T)=x+T, Tf(x)=Tx. 因為對任意x∈R,x+T= Tx不能恒成立,所以f(x)=
(2)因為函數f(x)=ax(a>0且a≠1)的圖象與函數y=x的圖象有公共點,
所以方程組:有解,消去y得ax=x,
顯然x=0不是方程ax=x的解,所以存在非零常數T,使aT=T.
于是對于f(x)=ax有 故f(x)=ax∈M.
(3)當k=0時,f(x)=0,顯然f(x)=0∈M.
當k≠0時,因為f(x)=sinkx∈M,所以存在非零常數T,對任意x∈R,有
f(x+T)=T f(x)成立,即sin(kx+kT)=Tsinkx .
因為k≠0,且x∈R,所以kx∈R,kx+kT∈R,
于是sinkx ∈[-1,1],sin(kx+kT) ∈[-1,1],
故要使sin(kx+kT)=Tsinkx .成立,
只有T=,當T=1時,sin(kx+k)=sinkx 成立,則k=2mπ, m∈Z .
當T=-1時,sin(kx-k)=-sinkx 成立,
即sin(kx-k+π)= sinkx 成立,
則-k+π=2mπ, m∈Z ,即k=-2(m-1) π, m∈Z .
綜合得,實數k的取值范圍是{k|k= mπ, m∈Z}
科目:高中數學 來源:2015屆江西省高一第二次月考數學試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數.
(1)求函數的最小正周期和最大值;
(2)在給出的直角坐標系中,畫出函數在區間
上的圖象.
(3)設0<x<,且方程
有兩個不同的實數根,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數學 題型:解答題
(本小題滿分13分)已知定義域為的函數
是奇函數.
(1)求的值;(2)判斷函數
的單調性;
(3)若對任意的,不等式恒成立
,求k的取值范圍.
查看答案和解析>>
科目:高中數學 來源:河南省09-10學年高二下學期期末數學試題(理科) 題型:解答題
(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,
為
的中點。
(Ⅰ)求證:∥平面
;
(Ⅱ)求異面直線與
所成的角。www.7caiedu.cn
[來源:KS5
U.COM
查看答案和解析>>
科目:高中數學 來源:2010-2011學年福建省高三5月月考調理科數學 題型:解答題
(本小題滿分13分)
已知為銳角,且
,函數
,數列{
}的首項
.
(1) 求函數的表達式;
(2)在中,若
A=2
,
,BC=2,求
的面積
(3) 求數列的前
項和
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com