日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
定義:如果數列{an}的任意連續三項均能構成一個三角形的三邊長,則稱{an}為“三角形”數列.對于“三角形”數列{an},如果函數y=f(x)使得bn=f(an)仍為一個“三角形”數列,則稱y=f(x)是數列{an}的“保三角形函數”(n∈N*).
(Ⅰ)已知{an}是首項為2,公差為1的等差數列,若f(x)=kx(k>1)是數列{an}的“保三角形函數”,求k的取值范圍;
(Ⅱ)已知數列{cn}的首項為2013,Sn是數列{cn}的前n項和,且滿足4Sn+1-3Sn=8052,證明{cn}是“三角形”數列;
(Ⅲ)若g(x)=lgx是(Ⅱ)中數列{cn}的“保三角形函數”,問數列{cn}最多有多少項?
(解題中可用以下數據:lg2≈0.301,lg3≈0.477,lg2013≈3.304)
【答案】分析:(Ⅰ)確定{an}是三角形數列,再利用函數的單調性,可得不等式,即可求k的取值范圍;
(Ⅱ)求得數列{cn}的通項,再利用定義進行證明即可;
(Ⅲ)確定{g(cn)}單調遞減,利用定義可得不等式且lgcn-1+lgcn>lgcn-2,由此可得n的范圍,從而可得結論.
解答:(Ⅰ)解:顯然an=n+1,an+an+1>an+2對任意正整數都成立,即{an}是三角形數列.
因為k>1,顯然有f(an)<f(an+1)<f(an+2)<…,
由f(an)+f(an+1)>f(an+2)得kn+kn+1>kn+2
解得
所以當時,f(x)=kx是數列{an}的保三角形函數.…(3分)
(Ⅱ)證明:由4sn+1-3sn=8052,得4sn-3sn-1=8052,
兩式相減得4cn+1-3cn=0,所以…(5分)
經檢驗,此通項公式滿足4sn+1-3sn=8052.
顯然cn>cn+1>cn+2
因為
所以{cn}是三角形數列.…(8分)
(Ⅲ)解:
所以{g(cn)}單調遞減.
由題意知,①且lgcn-1+lgcn>lgcn-2②,
由①得,解得n<27.4,
由②得,解得n<26.4.
即數列{bn}最多有26項.…(13分)
點評:本題考查新定義,考查函數的單調性,考查解不等式,考查學生分析解決問題的能力,正確理解新定義是關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

定義:如果數列{an}的任意連續三項均能構成一個三角形的三邊長,則稱{an}為“三角形”數列.對于“三角形”數列{an},如果函數y=f(x)使得bn=f(an)仍為一個“三角形”數列,則稱y=f(x)是數列{an}的“保三角形函數”,(n∈N).
(1)已知{an}是首項為2,公差為1的等差數列,若f(x)=kx,(k>1)是數列{an}的“保三角形函數”,求k的取值范圍;
(2)已知數列{cn}的首項為2010,Sn是數列{cn}的前n項和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數列;
(3)[文科]若g(x)=lgx是(2)中數列{cn}的“保三角形函數”,問數列{cn}最多有多少項.
[理科]根據“保三角形函數”的定義,對函數h(x)=-x2+2x,x∈[1,A],和數列1,1+d,1+2d,(d>0)提出一個正確的命題,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

定義:如果數列{an}的任意連續三項均能構成一個三角形的三邊長,則稱{an}為“三角形”數列.對于“三角形”數列{an},如果函數y=f(x)使得bn=f(an)仍為一個“三角形”數列,則稱y=f(x)是數列{an}的“保三角形函數”(n∈N*).
(Ⅰ)已知{an}是首項為2,公差為1的等差數列,若f(x)=kx(k>1)是數列{an}的“保三角形函數”,求k的取值范圍;
(Ⅱ)已知數列{cn}的首項為2013,Sn是數列{cn}的前n項和,且滿足4Sn+1-3Sn=8052,證明{cn}是“三角形”數列;
(Ⅲ)若g(x)=lgx是(Ⅱ)中數列{cn}的“保三角形函數”,問數列{cn}最多有多少項?
(解題中可用以下數據:lg2≈0.301,lg3≈0.477,lg2013≈3.304)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2010•青浦區二模)[理科]定義:如果數列{an}的任意連續三項均能構成一個三角形的三邊長,則稱{an}為“三角形”數列.對于“三角形”數列{an},如果函數y=f(x)使得bn=f(an)仍為一個“三角形”數列,則稱y=f(x)是數列{an}的“保三角形函數”,(n∈N*).
(1)已知{an}是首項為2,公差為1的等差數列,若f(x)=kx,(k>1)是數列{an}的“保三角形函數”,求k的取值范圍;
(2)已知數列{cn}的首項為2010,Sn是數列{cn}的前n項和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數列;
(3)根據“保三角形函數”的定義,對函數h(x)=-x2+2x,x∈[1,A],和數列1,1+d,1+2d(d>0)提出一個正確的命題,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

定義:如果數列{an}的任意連續三項均能構成一個三角形的三邊長,則稱{an}為“三角形”數列.對于“三角形”數列{an},如果函數y=f(x)使得bn=f(an)仍為一個“三角形”數列,則稱y=f(x)是數列{an}的“保三角形函數”,(n∈N).
(1)已知{an}是首項為2,公差為1的等差數列,若f(x)=kx,(k>1)是數列{an}的“保三角形函數”,求k的取值范圍;
(2)已知數列{cn}的首項為2010,Sn是數列{cn}的前n項和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數列;
(3)[文科]若g(x)=lgx是(2)中數列{cn}的“保三角形函數”,問數列{cn}最多有多少項.
[理科]根據“保三角形函數”的定義,對函數h(x)=-x2+2x,x∈[1,A],和數列1,1+d,1+2d,(d>0)提出一個正確的命題,并說明理由.

查看答案和解析>>

科目:高中數學 來源:2010年江蘇省高考數學模擬專題訓練:解答題(解析版) 題型:解答題

定義:如果數列{an}的任意連續三項均能構成一個三角形的三邊長,則稱{an}為“三角形”數列.對于“三角形”數列{an},如果函數y=f(x)使得bn=f(an)仍為一個“三角形”數列,則稱y=f(x)是數列{an}的“保三角形函數”,(n∈N).
(1)已知{an}是首項為2,公差為1的等差數列,若f(x)=kx,(k>1)是數列{an}的“保三角形函數”,求k的取值范圍;
(2)已知數列{cn}的首項為2010,Sn是數列{cn}的前n項和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數列;
(3)[文科]若g(x)=lgx是(2)中數列{cn}的“保三角形函數”,問數列{cn}最多有多少項.
[理科]根據“保三角形函數”的定義,對函數h(x)=-x2+2x,x∈[1,A],和數列1,1+d,1+2d,(d>0)提出一個正確的命題,并說明理由.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久久综合激情 | 欧美电影一区二区 | 久久亚洲成人av | 色综合久久88色综合天天6 | 狠狠操av| 欧美精品久久久久久久久老牛影院 | 久久毛片免费 | 成人免费在线网址 | 国产精品久久久久久网站 | 欧美成人精品一区二区男人看 | 欧美激情综合五月色丁香小说 | 久久1区 | 欧美最猛性xxxxx亚洲精品 | 久久二 | 久久国产麻豆 | 91丨九色丨国产在线 | 一个人看的www日本高清视频 | 国产激情视频网 | 欧美日韩国产在线观看 | 国产a级毛片 | av香港经典三级级 在线 | 午夜视频网址 | 婷婷综合一区 | 欧美精品在线一区 | 国产精品久久久久久久 | 日韩精品视频免费 | 午夜精品网站 | 色婷婷久久久 | 国产性久久 | 亚洲视频三区 | 自拍偷拍亚洲欧洲 | 黄色国产大片 | 成人久久18免费网站图片 | 亚洲福利 | 亚洲人成中文字幕在线观看 | 久久精品a级毛片 | 爽死777影院 | 在线播放www| 久久欧美精品一区 | 欧美视频三区 | 午夜影视免费观看 |