日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=ex-x2+ax-1.
(1)過原點的直線與曲線y=f(x)相切于點M,求切點M的橫坐標;
(2)若x≥0時,不等式f(x)≥0恒成立,試確定實數a的取值范圍.
分析:(1)設切點為(x0,y0),則直線l的斜率為f'(x0)=ex-2x+a,從而求得直線l的方程,有條件直線1過原點可求解切點坐標.
(2)由導數的知識得出當x=ln2時,f'(x)=ex-2x+a取得最小值,下面只要ex-2x+a≥2-2ln2+a恒成立即可,等價于ex-2x+a在定義域上的最小值大于2-2ln2+a即可.
解答:解:(1)∵f(x)=ex-x2+ax-1,∴f'(x)=ex-2x+a,
k=f′(x0)=ex0-2x0+a=
ex0-x02+ax0-1
x0

x0ex0-2x02+ax0=ex0-x02+ax0-1,
∴(x0-1)(ex0-x0-1)=0,
∴x0=1或x0=0(4分)
(2)∵f'(x)=ex-2x+a,∴f''(x)=ex-2=0,x=ln2,
可知,當x=ln2時,∵f'(x)=ex-2x+a取得最小值,
即f'(x)=ex-2x+a≥2-2ln2+a,
①當a≥2ln2-2時,f'(x)≥0恒成立,∴f(x)在R上為增函數,
又∵f(0)=e0-1=0,∴f(x)≥0恒成立.
2當a<2ln2-23時,f'(x)=ex-2x+a=04有兩不等根x1<ln2<x25,
則x∈(x1,x2),f'(x)<0,x∈(x2,+∞),f'(x)>0,
當x=x2時f(x)取到極小值,∴f(x2)=ex2-x22+ax2-1≥0
f′(x2)=ex2-2x2+a=0,即a=-ex2+2x2,∴ax2=-x2ex2+2x22
ex2-x22-x2ex2+2x22-1=(1-x2)ex2+x22-1=(1-x2)(ex2-x2-1)≥0
ex2-x2-1≥0,∴l(xiāng)n2<x2≤1,∴a=-ex2+2x2∈[-e+2,2ln2-2)
由①②知實數a的取值范圍是a≥2-e.(12分)
點評:本題考查導數在研究函數的單調性、最值和中的應用,考查等價轉化的思想方法以及分析問題的能力.本題的第二問實際上是ex-2x+a≥2-2ln2+a恒成立,關鍵是利用分離參數構造函數進行解答.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=e-x(cosx+sinx),將滿足f′(x)=0的所有正數x從小到大排成數列{xn}.求證:數列{f(xn)}為等比數列.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•西城區(qū)二模)已知函數f(x)=e|x|+|x|.若關于x的方程f(x)=k有兩個不同的實根,則實數k的取值范圍是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•菏澤一模)已知函數f(x)=e|lnx|-|x-
1
x
|,則函數y=f(x+1)的大致圖象為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=e-xsinx(其中e=2.718…).
(Ⅰ)求f(x)的單調區(qū)間;
(Ⅱ)求f(x)在[-π,+∞)上的最大值與最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=e-x(x2+x+1).
(Ⅰ)求函數f(x)的單調遞減區(qū)間;
(Ⅱ)求函數f(x)在[-1,1]上的最值.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日本啪啪网站 | 久久精品免费 | 欧美日韩第一页 | 黄色av网站在线免费观看 | 日韩欧美在线观看视频 | 久久久免费 | 成人精品一区 | 久久久久久久久久久久久女国产乱 | 五月激情综合网 | 精品国产一区二区三区久久 | www.超碰在线 | 久久久精品高清 | 人人草视频在线观看 | 欧美日一区二区 | 日韩国产欧美精品 | 亚洲色图第八页 | 日韩中文字幕在线 | 激情五月婷婷综合 | 91精品国产综合久久久久久漫画 | www欧美 | 国产免费看av大片的网站吃奶 | 最近免费中文字幕大全免费版视频 | 日本三级在线视频 | 国产午夜精品久久久久久久 | 欧洲一级视频 | 91精品在线播放 | 日本高清视频一区二区三区 | 综合久| 日韩一级片免费在线观看 | 国产91成人在在线播放 | 无毒黄网 | 91久久人人夜色一区二区 | 国产精品成人在线 | 九九热精品免费视频 | 免费的黄色 | 欧美午夜一区 | 亚洲欧美中文日韩v在线观看 | 中文字幕一区二区在线观看 | 国产成人精品一区二区三区四区 | 久久久久久久久久久免费 | 天天操天天曰 |