【題目】設(shè).
(1)當(dāng)時,f(x)的最小值是_____;
(2)若f(0)是f(x)的最小值,則a的取值范圍是_____.
【答案】 [0,
]
【解析】
(1)先求出分段函數(shù)的每一段的最小值,再求函數(shù)的最小值;(2)對分兩種情況討論,若a<0,不滿足條件.若a≥0,f(0)=a2≤2,即0≤a
,即得解.
(1)當(dāng)時,當(dāng)x≤0時,f(x)=(x
)2≥(
)2
,
當(dāng)x>0時,f(x)=x2
2,當(dāng)且僅當(dāng)x=1時取等號,
則函數(shù)的最小值為,
(2)由(1)知,當(dāng)x>0時,函數(shù)f(x)≥2,此時的最小值為2,
若a<0,則當(dāng)x=a時,函數(shù)f(x)的最小值為f(a)=0,此時f(0)不是最小值,不滿足條件.
若a≥0,則當(dāng)x≤0時,函數(shù)f(x)=(x﹣a)2為減函數(shù),
則當(dāng)x≤0時,函數(shù)f(x)的最小值為f(0)=a2,
要使f(0)是f(x)的最小值,則f(0)=a2≤2,即0≤a,
即實數(shù)a的取值范圍是[0,]
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖①,有一個長方體形狀的敞口玻璃容器,底面是邊長為20cm的正方形,高為30cm,內(nèi)有20cm深的溶液.現(xiàn)將此容器傾斜一定角度(圖②),且傾斜時底面的一條棱始終在桌面上(圖①、②均為容器的縱截面).
(1)要使傾斜后容器內(nèi)的溶液不會溢出,角的最大值是多少?
(2)現(xiàn)需要倒出不少于的溶液,當(dāng)
時,能實現(xiàn)要求嗎?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,平面PCD,
,
,
,E為AD的中點,AC與BE相交于點O.
(1)證明:平面ABCD.
(2)求直線BC與平面PBD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的首項
,對任意的
,都有
,數(shù)列
是公比不為
的等比數(shù)列.
(1)求實數(shù)的值;
(2)設(shè)數(shù)列
的前
項和為
,求所有正整數(shù)
的值,使得
恰好為數(shù)列
中的項.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù),下列判斷正確的是( )
A.是
的極大值點
B.函數(shù)有且只有1個零點
C.存在正實數(shù),使得
成立
D.對任意兩個正實數(shù),
,且
,若
,則
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中
為常數(shù),且
.
(1)若是奇函數(shù),求
的取值集合
;
(2)當(dāng)時,設(shè)
的反函數(shù)
,且
的圖象與
的圖象關(guān)于
對稱,求
的取值集合
;
(3)對于問題(1)(2)中的、
,當(dāng)
時,不等式
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:直線關(guān)于圓的圓心距單位圓心到直線的距離與圓的半徑之比.
(1)設(shè)圓,求過點
的直線關(guān)于圓
的圓心距單位
的直線方程.
(2)若圓與
軸相切于點
,且直線
關(guān)于圓
的圓心距單位
,求此圓
的方程.
(3)是否存在點,使過點
的任意兩條互相垂直的直線分別關(guān)于相應(yīng)兩圓
與
的圓心距單位始終相等?若存在,求出相應(yīng)的
點坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,
(1)求在
處的切線方程以及
的單調(diào)性;
(2)對,有
恒成立,求
的最大整數(shù)解;
(3)令,若
有兩個零點分別為
,
且
為
的唯一的極值點,求證:
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com