【題目】如圖,在多面體中,底面
是邊長為
的正方形,四邊形
是矩形,平面
平面
,
,
和
分別是
和
的中點.
(Ⅰ)求證: 平面
.
(Ⅱ)求證:平面平面
.
(Ⅲ)求多面體的體積.
【答案】(1)見解析(2)見解析(3)8
【解析】試題分析:(1)由面面垂直性質(zhì)定理得平面
,即得
,而由正方形性質(zhì)得
,所以由線面垂直判定定理得
平面
.(2)設(shè)
與
相交于
點,由三角形中位線性質(zhì)易得
,
,再由線面平行判定定理以及面面平行判定定理得結(jié)論(3)即求兩個四棱錐
與棱錐
體積之和,而AC為高,根據(jù)錐體體積公式求體積
試題解析:(Ⅰ)證明:∵在正方形中,
,
∵平面平面
,
且平面平面
,
在矩形中,
,
∴平面
,
∴,
∵點,
、
平面
,
∴平面
.
(Ⅱ)設(shè)與
相交于
點,
∵、
是
、
中點,
∴,
又∵、
是
、
中點,
∴,
∵點,
點,
、
平面
,
、
平面
,
∴平面平面
.
(Ⅲ)將多面體分割為
棱錐與棱錐
,
∵、
到平面
的距離均為
的長度,
∴
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題共14分)
如圖,在四棱錐中,
平面
,底面
是菱形,
.
(Ⅰ)求證: 平面
(Ⅱ)若求
與
所成角的余弦值;
(Ⅲ)當(dāng)平面與平面
垂直時,求
的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在長方體中,
,
是棱
上的一點.
(1)求證:平面
;
(2)求證:;
(3)若是棱
的中點,在棱
上是否存在點
,使得
平面
?若存在,求出線段
的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為
,其中
為參數(shù),
,再以坐標(biāo)原點
為極點,以
軸正半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
,其中
,
,直線
與曲線
交于
兩點.
(1)求的值;
(2)已知點,且
,求直線
的普通方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCO的頂點C、A分別在x軸、y軸上,BC是菱形BDCE的對角線,若∠D=60°,BC=2,則點D的坐標(biāo)是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有正方形ABCD和一個以O(shè)為直角頂點的三角板,移動三角板,使三角板兩直角邊所在直線分別與直線BC、CD交于點M、N.
(1)如圖1,若點O與點A重合,則OM與ON的數(shù)量關(guān)系是
(2)如圖2,若點O在正方形的中心(即兩對角線交點),則(1)中的結(jié)論是否仍然成立?請說明理由;
(3)如圖3,若點O在正方形的內(nèi)部(含邊界),當(dāng)OM=ON時,請?zhí)骄奎cO在移動過程中可形成什么圖形?
(4)如圖4,是點O在正方形外部的一種情況.當(dāng)OM=ON時,請你就“點O的位置在各種情況下(含外部)移動所形成的圖形”提出一個正確的結(jié)論.(不必說明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c的圖象如圖所示,則|a﹣b+c|+|2a+b|=( )
A.a+b
B.a﹣2b
C.a﹣b
D.3a
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的對稱軸為坐標(biāo)軸,離心率為
,且一個焦點坐標(biāo)為
.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓
相交于
兩點,以線段
為鄰邊作平行四邊形
,其中點
在橢圓
上,
為坐標(biāo)原點,求點
到直線
的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了更好地規(guī)劃進貨的數(shù)量,保證蔬菜的新鮮程度,某蔬菜商店從某一年的銷售數(shù)據(jù)中,隨機抽取了8組數(shù)據(jù)作為研究對象,如下圖所示((噸)為買進蔬菜的質(zhì)量,
(天)為銷售天數(shù)):
2 | 3 | 4 | 5 | 6 | 7 | 9 | 12 | |
1 | 2 | 3 | 3 | 4 | 5 | 6 | 8 |
(Ⅰ)根據(jù)上表數(shù)據(jù)在下列網(wǎng)格中繪制散點圖;
(Ⅱ)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于
的線性回歸方程
;
(Ⅲ)根據(jù)(Ⅱ)中的計算結(jié)果,若該蔬菜商店準(zhǔn)備一次性買進25噸,則預(yù)計需要銷售多少天.
參考公式: ,
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com