日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
(文)已知A={x|
1
2
≤x≤2}
,f(x)=x2+px+q和g(x)=x+
1
x
+1
是定義在A上的函數,當x、x0∈A時,有f(x)≥f(x0),g(x)≥g(x0),且f(x0)=g(x0),則f(x)在A上的最大值是______.
∵當x、x0∈A時,有f(x)≥f(x0),g(x)≥g(x0),
∴f(x0),g(x0)分別為函數f(x),g(x)的最小值
x,x0∈[
1
2
,2]

g(x)=x+
1
x
+1≥2
x•
1
x
+1
=3即g(x0)=3,此時x0=1
∵f(x0)=g(x0),則f(x0)=f(1)=3
-
p
2
=1
1+p+q=3

∴p=-2,q=4
∴f(x)=x2-2x+4在[
1
2
,2]
上的最大值為f(2)=4
故答案為:4
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(文)已知關于x的方程x2+mx+n+1=0的兩根為x1,x2,且滿足-1<x1<0<x2<1,則點(m,n)所表示的平面區域面積為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知
a
=(cos
3
2
x,sin
3
2
x),
b
=(cos
x
2
,-sin
x
2
),若f(x)=
a
b
-|
a
+
b
|2

(I)求函數f(x)的單調減區間;   
(II)若x[-
π
3
π
4
],求函數f(x)的最大值和最小值.
(文)已知
a
=(cos
3
2
x,sin
3
2
x),
b
=(cos
x
2
,-sin
x
2
),若f(x)=
a
b

(Ⅰ)求函數f(x)的最小正周期;    
(Ⅱ)若x∈[-
π
3
π
4
],求函數f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(文)已知A={x|
1
2
≤x≤2}
,f(x)=x2+px+q和g(x)=x+
1
x
+1
是定義在A上的函數,當x、x0∈A時,有f(x)≥f(x0),g(x)≥g(x0),且f(x0)=g(x0),則f(x)在A上的最大值是
4
4

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•青浦區二模)(文)已知A、B是拋物線y2=4x上的相異兩點.
(1)設過點A且斜率為-1的直線l1,與過點B且斜率為1的直線l2相交于點P(4,4),求直線AB的斜率;
(2)問題(1)的條件中出現了這樣的幾個要素:已知圓錐曲線Γ,過該圓錐曲線上的相異兩點A、B所作的兩條直線l1、l2相交于圓錐曲線Γ上一點;結論是關于直線AB的斜率的值.請你對問題(1)作適當推廣,并給予解答;
(3)若線段AB(不平行于y軸)的垂直平分線與x軸相交于點Q(x0,0).若x0>2,試用x0表示線段AB中點的橫坐標.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 欧美综合色 | 噜噜噜天天躁狠狠躁夜夜精品 | 久久9久| 亚洲欧美日韩天堂 | 精品三级在线观看 | 欧美成人精品一区 | 一区二区三区四区国产 | 中文字幕国产 | 欧美精品亚洲精品 | 色综合av | 日韩精品一区二区三区在线播放 | 91在线精品一区二区 | 色婷婷亚洲 | 女人口述交换啪啪高潮过程 | 久久久久91 | 日韩免费一区二区 | 日本免费一区二区在线观看 | 99精品视频在线 | 精品一区二区电影 | 亚洲男人天堂2023 | 亚洲视频中文字幕 | 综合网视频 | 国产精品久久久久毛片软件 | 国产成人在线播放 | 亚洲色图网站 | av在线三级| 国产伦精品一区二区三区电影 | 成年人在线视频免费观看 | 亚洲日本中文 | 精品在线观看av | 国产艹| 亚洲精品在线播放 | 99精品国产一区二区 | 91婷婷射| 精品国产31久久久久久 | 自拍亚洲 | 男人天堂网址 | 国产a级毛片 | 中文字幕欧美激情 | 综合天天| 成人不卡视频 |