【題目】如圖,已知橢圓,
分別為其左、右焦點,過
的直線與此橢圓相交于
兩點,且
的周長為8,橢圓
的離心率為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)在平面直角坐標系中,已知點
與點
,過
的動直線
(不與
軸平行)與橢圓相交于
兩點,點
是點
關于
軸的對稱點.求證:
(i)三點共線.
(ii).
科目:高中數學 來源: 題型:
【題目】設橢圓:
的左、右焦點分別為
,
,下頂點為
,橢圓
的離心率是
,
的面積是
.
(1)求橢圓的標準方程.
(2)直線與橢圓
交于
,
兩點(異于
點),若直線
與直線
的斜率之和為1,證明:直線
恒過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,
是過定點
且傾斜角為
的直線;在極坐標系(以坐標原點
為極點,以
軸非負半軸為極軸,取相同單位長度)中,曲線
的極坐標方程為
.
(1)寫出直線的參數方程,并將曲線
的方程化為直角坐標方程;
(2)若曲線與直線
相交于不同的兩點
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義:對于數列,如果存在常數
,使對任意正整數
,總有
成立,那么我們稱數列
為“
﹣擺動數列”.
①若,
,
,則數列
_____“
﹣擺動數列”,
_____“
﹣擺動數列”(回答是或不是);
②已知“﹣擺動數列”
滿足
,
.則常數
的值為_____.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設拋物線的焦點為F,過點F作垂直于x軸的直線與拋物線交于A,B兩點,且以線段AB為直徑的圓過點
.
(1)求拋物線C的方程;
(2)設過點的直線
分別與拋物線C交于點D,E和點G,H,且
,求四邊形
面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設F是拋物線y2=4x的焦點,M,P,Q是拋物線上三個不同的動點,直線PM過點F,MQ∥OP,直線QP與MO交于點N.記點M,P,Q的縱坐標分別為y0,y1,y2.
(1)證明:y0=y1﹣y2;
(2)證明:點N的橫坐標為定值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com