【題目】某小組有7個同學,其中4個同學從來沒有參加過天文研究性學習活動,3個同學曾經參加過天文研究性學習活動.
(1)現從該小組中隨機選2個同學參加天文研究性學習活動,求恰好選到1個曾經參加過天文研究性學習活動的同學的概率;
(2)若從該小組隨機選2個同學參加天文研究性學習活動,則活動結束后,該小組有參加過天文研究性學習活動的同學個數是一個隨機變量,求隨機變量
的分布列和數學期望
.
科目:高中數學 來源: 題型:
【題目】如圖1,等腰中,
,
,點
,
,
為線段
的四等分點,且
.現沿
,
,
折疊成圖2所示的幾何體,使
.
(圖1)
(圖2)
(1)證明:平面
;
(2)求幾何體的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點、
為雙曲線
的左、右焦點,過
作垂直于
軸的直線,在
軸上方交雙曲線
于點
,且
,圓
的方程是
.
(1)求雙曲線的方程;
(2)過雙曲線上任意一點
作該雙曲線兩條漸近線的垂線,垂足分別為
、
,求
的值;
(3)過圓上任意一點
作圓
的切線
交雙曲線
于
、
兩點,
中點為
,求證:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于無窮數列,若對任意
,滿足
且
(
是與
無關的常數),則稱數列
為
數列.
(1)若(
),判斷數列
是否為
數列,說明理由;
(2)設,求證:數列
是
數列,并求常數
的取值范圍;
(3)設數列(
,
),問數列
是否為
數列?說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
的在數集
上都有定義,對于任意的
,當
時,
或
成立,則稱
是數集
上
的限制函數.
(1)求在
上的限制函數
的解析式;
(2)證明:如果在區間
上恒為正值,則
在
上是增函數;[注:如果
在區間
上恒為負值,則
在區間
上是減函數,此結論無需證明,可以直接應用]
(3)利用(2)的結論,求函數在
上的單調區間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】新高考3+3最大的特點就是取消文理科,除語文、數學、外語之外,從物理、化學、生物、政治、歷史、地理這6科中自由選擇三門科目作為選考科目.某研究機構為了了解學生對全理(選擇物理、化學、生物)的選擇是否與性別有關,覺得從某學校高一年級的650名學生中隨機抽取男生,女生各25人進行模擬選科.經統計,選擇全理的人數比不選全理的人數多10人.
(1)請完成下面的2×2列聯表;
選擇全理 | 不選擇全理 | 合計 | |
男生 | 5 | ||
女生 | |||
合計 |
(2)估計有多大把握認為選擇全理與性別有關,并說明理由;
(3)現從這50名學生中已經選取了男生3名,女生2名進行座談,從中抽取2名代表作問卷調查,求至少抽到一名女生的概率.
附:,其中
.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.076 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對年利率為的連續復利,要在
年后達到本利和
,則現在投資值為
,
是自然對數的底數.如果項目
的投資年利率為
的連續復利.
(1)現在投資5萬元,寫出滿年的本利和,并求滿10年的本利和;(精確到0.1萬元)
(2)一個家庭為剛出生的孩子設立創業基金,若每年初一次性給項目投資2萬元,那么,至少滿多少年基金共有本利和超過一百萬元?(精確到1年)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐PABC中,不能證明AP⊥BC的條件是( )
A. AP⊥PB,AP⊥PC
B. AP⊥PB,BC⊥PB
C. 平面BPC⊥平面APC,BC⊥PC
D. AP⊥平面PBC
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com