【題目】(本小題滿分10分) 選修4-4:極坐標系與參數方程
在極坐標系中曲線的極坐標方程為
,點
.以極點
為原點,以極軸為
軸正半軸建立直角坐標系.斜率為
的直線
過點
,且與曲線
交于
兩點.
(Ⅰ)求出曲線的直角坐標方程和直線
的參數方程;
(Ⅱ)求點到兩點
的距離之積.
科目:高中數學 來源: 題型:
【題目】設函數 (x∈R),其中t∈R,將f(x)的最小值記為g(t).
(1)求g(t)的表達式;
(2)當﹣1≤t≤1時,要使關于t的方程g(t)=kt有且僅有一個實根,求實數k的取值范圍
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某貨輪勻速行駛在相距300海里的甲、乙兩地間運輸貨物,運輸成本由燃料費用和其它費用組成,已知該貨輪每小時的燃料費用與其航行速度的平方成正比(比例系數為0.5),其它費用為每小時800元,且該貨輪的最大航行速度為50海里/小時.
(1)請將從甲地到乙地的運輸成本y(元)表示為航行速度x(海里/小時)的函數;
(2)要使從甲地到乙地的運輸成本最少,該貨輪應以多大的航行速度行駛?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= x3﹣
(m+3)x2+(m+6)x,x∈R.(其中m為常數)
(1)當m=4時,求函數的極值點和極值;
(2)若函數y=f(x)在區間(0,+∞)上有兩個極值點,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=cos(2x+ )+1,△ABC中,角A、B、C的對邊分別是a、b、c.
(1)若角A、B、C成等差數列,求f(B)的值;
(2)若f( ﹣
)=
,邊a、b、c成等比數列,△ABC的面積S=
,求△ABC的周長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,點P(0,﹣1)是橢圓C1: =1(a>b>0)的一個頂點,C1的長軸是圓C2:x2+y2=4的直徑,l1 , l2是過點P且互相垂直的兩條直線,其中l1交圓C2于A,B兩點,l2交橢圓C1于另一點D.
(1)求橢圓C1的方程;
(2)求△ABD面積的最大值時直線l1的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等比數列{an}滿足2a1+a3=3a2 , 且a3+2是a2 , a4的等差中項.
(1)求數列{an}的通項公式;
(2)若bn=an+log2 ,Sn=b1+b2+…bn , 求使 Sn﹣2n+1+47<0 成立的正整數n的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com