【題目】已知橢圓:
的右焦點與短軸兩端點構成一個面積為
的等腰直角三角形,
為坐標原點.
(1)求橢圓的方程;
(2)設點在橢圓
上,點
在直線
上,且
,求證:
為定值;
(3)設點在橢圓
上運動,
,且點
到直線
的距離為常數
,求動點
的軌跡方程.
科目:高中數學 來源: 題型:
【題目】給出定理:在圓錐曲線中,是拋物線
的一條弦,
是
的中點,過點
且平行于
軸的直線與拋物線的交點為
.若
兩點縱坐標之差的絕對值
,則
的面積
,試運用上述定理求解以下各題:
(1)若,
所在直線的方程為
,
是
的中點,過
且平行于
軸的直線與拋物線
的交點為
,求
;
(2)已知是拋物線
的一條弦,
是
的中點,過點
且平行于
軸的直線與拋物線的交點為
,
分別為
和
的中點,過
且平行于
軸的直線與拋物線
分別交于點
,若
兩點縱坐標之差的絕對值
,求
和
;
(3)請你在上述問題的啟發下,設計一種方法求拋物線:與弦
圍成成的“弓形”的面積,并求出相應面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義域是上的連續函數
圖像的兩個端點為
、
,
是圖像
上任意一點,過點
作垂直于
軸的直線
交線段
于點
(點
與點
可以重合),我們稱
的最大值為該函數的“曲徑”,下列定義域是
上的函數中,曲徑最小的是( )
A.B.
C.D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在正方體中,點
在線段
上移動,有下列判斷:①平面
平面
;②平面
平面
;③三棱錐
的體積不變;④
平面
.其中,正確的是______.(把所有正確的判斷的序號都填上)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在上的函數
,如果對任意
,恒有
成立,則稱
為
階縮放函數.
(1)已知函數為二階縮放函數,且當
時,
,求
的值;
(2)已知函數為二階縮放函數,且當
時,
,求證:函數
在
上無零點;
(3)已知函數為
階縮放函數,且當
時,
的取值范圍是
,求
在
上的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如果實系數、
、
和
、
、
都是非零常數.
(1)設不等式和
的解集分別是
、
,試問
是
的什么條件?并說明理由.
(2)在實數集中,方程和
的解集分別為
和
,試問
是
的什么條件?并說明理由.
(3)在復數集中,方程和
的解集分別為
和
,證明:
是
的充要條件.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,曲線由兩個橢圓
:
和橢圓
:
組成,當
成等比數列時,稱曲線
為“貓眼曲線”.
(1)若貓眼曲線過點
,且
的公比為
,求貓眼曲線
的方程;
(2)對于題(1)中的求貓眼曲線,任作斜率為
且不過原點的直線與該曲線相交,交橢圓
所得弦的中點為M,交橢圓
所得弦的中點為N,求證:
為與
無關的定值;
(3)若斜率為的直線
為橢圓
的切線,且交橢圓
于點
,
為橢圓
上的任意一點(點
與點
不重合),求
面積的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com