日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
由倍角公式cos2x=2cos2x-1,可知cos2x可以表示為cosx的二次多項式.
對于cos3x,我們有
cos3x=cos(2x+x)=cos2xcosx-sin2xsinx
=(2cos2x-1)cosx-2(sinxcosx)sinx
=2cos3x-cosx-2(1-cos2x)cosx
=4cos3x-3cocs.
可見cos3x可以表示為cosx的三次多項式.
一般地,存在一個n次多項式Pn(t),使得cosnx=Pn(cosx),這些多項式Pn(t)稱為切比雪夫(P.L.Tschebyscheff)多項式.
(1)請嘗試求出P4(t),即用一個cosx的四次多項式來表示cos4x.
(2)化簡cos(60°-θ)cos(60°+θ)cosθ,并利用此結果求sin20°sin40°sin60°sin80°的值.
(1)由于cos4x=cos(2x+2x)=cos22x-sin22x
=(2cos2x-1)2-(2sinxcosx)2
=4cos4x-4cos2x+1-4sin2cos2x
=4cos4x-4cos2x+1-4(1-cos2x)cos2x
=8cos4x-8cos2x+1(3分)
(2)cos(60°-θ)cos(60°+θ)cosθ=(
1
2
cosθ+
3
2
sinθ)(
1
2
cosθ-
3
2
sinθ)cosθ

=(
1
4
cos2θ-
3
4
sin2θ)cosθ
=
1
4
(4cos2θ-3)cosθ
=
1
4
cos3θ
(7分)
∵sin20°sin40°sin60°sin80°=cos70°cos50°cos30°cos10°
=
3
2
cos10°cos(60°-10°)cos(60°+10°)
=
3
2
×
1
4
cos30°
=
3
16
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

由倍角公式cos2x=2cos2x-1,可知cos2x可以表示為cosx的二次多項式.對于cos3x,我們有
cos3x=cos(2x+x)
=cos2xcosx-sin2xsinx
=(2cos2x-1)cosx-2(sinxcosx)sinx
=2cos3x-cosx-2(1-cos2x)cosx
=4cos3x-3cosx
可見cos3x可以表示為cosx的三次多項式.一般地,存在一個n次多項式Pn(t),使得cosnx=Pn(cosx),這些多項式Pn(t)稱為切比雪夫多項式.
(I)求證:sin3x=3sinx-4sin3x;
(II)請求出P4(t),即用一個cosx的四次多項式來表示cos4x;
(III)利用結論cos3x=4cos3x-3cosx,求出sin18°的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

由倍角公式cos2x=2cos2x-1,可知cos2x可以表示為cosx的二次多項式.
對于cos3x,我們有
cos3x=cos(2x+x)=cos2xcosx-sin2xsinx
=(2cos2x-1)cosx-2(sinxcosx)sinx
=2cos3x-cosx-2(1-cos2x)cosx
=4cos3x-3cocs.
可見cos3x可以表示為cosx的三次多項式.
一般地,存在一個n次多項式Pn(t),使得cosnx=Pn(cosx),這些多項式Pn(t)稱為切比雪夫(P.L.Tschebyscheff)多項式.
(1)請嘗試求出P4(t),即用一個cosx的四次多項式來表示cos4x.
(2)化簡cos(60°-θ)cos(60°+θ)cosθ,并利用此結果求sin20°sin40°sin60°sin80°的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

由倍角公式cos2x=2cos2x-1,可知cos2x可以表示為cosx的二次多項式.對于cos3x,我們有
cos3x=cos(2x+x)
=cos2xcosx-sin2xsinx
=(2cos2x-1)cosx-2(sinxcosx)sinx
=2cos3x-cosx-2(1-cos2x)cosx
=4cos3x-3cosx
可見cos3x可以表示為cosx的三次多項式.一般地,存在一個n次多項式Pn(t),使得cosnx=Pn(cosx),這些多項式Pn(t)稱為切比雪夫多項式.
(I)求證:sin3x=3sinx-4sin3x;
(II)請求出P4(t),即用一個cosx的四次多項式來表示cos4x;
(III)利用結論cos3x=4cos3x-3cosx,求出sin18°的值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

由倍角公式cos2x=2cos2x-1,可知cos2x可以表示為cosx的二次多項式.對于cos3x,我們有
cos3x=cos(2x+x)
=cos2xcosx-sin2xsinx
=(2cos2x-1)cosx-2(sinxcosx)sinx
=2cos3x-cosx-2(1-cos2x)cosx
=4cos3x-3cosx
可見cos3x可以表示為cosx的三次多項式.一般地,存在一個n次多項式Pn(t),使得cosnx=Pn(cosx),這些多項式Pn(t)稱為切比雪夫多項式.
(I)求證:sin3x=3sinx-4sin3x;
(II)請求出P4(t),即用一個cosx的四次多項式來表示cos4x;
(III)利用結論cos3x=4cos3x-3cosx,求出sin18°的值.

查看答案和解析>>

科目:高中數學 來源:2010-2011學年遼寧省大連市協作體高一(下)4月月考數學試卷(文科)(解析版) 題型:解答題

由倍角公式cos2x=2cos2x-1,可知cos2x可以表示為cosx的二次多項式.對于cos3x,我們有
cos3x=cos(2x+x)
=cos2xcosx-sin2xsinx
=(2cos2x-1)cosx-2(sinxcosx)sinx
=2cos3x-cosx-2(1-cos2x)cosx
=4cos3x-3cosx
可見cos3x可以表示為cosx的三次多項式.一般地,存在一個n次多項式Pn(t),使得cosnx=Pn(cosx),這些多項式Pn(t)稱為切比雪夫多項式.
(I)求證:sin3x=3sinx-4sin3x;
(II)請求出P4(t),即用一個cosx的四次多項式來表示cos4x;
(III)利用結論cos3x=4cos3x-3cosx,求出sin18°的值.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 三级免费毛片 | 青青草视频在线观看 | 色婷婷综合久色aⅴ | 久久精品久久久久 | 欧美成人h版在线观看 | 国产精品久久久久久久久久久免费看 | 一级片免费观看 | 日韩毛片在线免费观看 | 日韩美女一区二区三区 | 欧美啪| 成人精品一区二区三区 | 久久国产电影 | 国产精品爱久久久久久久 | 国产精品久久久久久亚洲调教 | 国产麻豆乱码精品一区二区三区 | 中文字幕在线视频网站 | 天天av网| 日韩一二三区 | 精品国产乱码久久久久久1区二区 | 日韩三区| 午夜精品一区二区三区在线 | 国产黄色免费网站 | 欧美精品成人一区二区三区四区 | 欧美一区二区 | 成人黄色在线 | 国产片一区二区 | 国变精品美女久久久久av爽 | 国产一区二区三区久久久久久久久 | 国产美女视频黄a视频免费 国产美女在线播放 | 亚洲一区二区精品视频 | 欧美在线激情 | 中国一级毛片 | 老黄网站在线观看 | 一区二区视频在线 | 欧美乱淫| 亚洲无吗电影 | 人人草视频在线观看 | 一级黄色国产 | 午夜少妇av | 91精品久久久久久久久久久久久久久 | 永久精品 |