日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
由倍角公式cos2x=2cos2x-1,可知cos2x可以表示為cosx的二次多項式.對于cos3x,我們有
cos3x=cos(2x+x)
=cos2xcosx-sin2xsinx
=(2cos2x-1)cosx-2(sinxcosx)sinx
=2cos3x-cosx-2(1-cos2x)cosx
=4cos3x-3cosx
可見cos3x可以表示為cosx的三次多項式.一般地,存在一個n次多項式Pn(t),使得cosnx=Pn(cosx),這些多項式Pn(t)稱為切比雪夫多項式.
(I)求證:sin3x=3sinx-4sin3x;
(II)請求出P4(t),即用一個cosx的四次多項式來表示cos4x;
(III)利用結論cos3x=4cos3x-3cosx,求出sin18°的值.
分析:(I)利用誘導公式可得sin3x=-cos(
2
-3x)=-cos[3(
2
-3x)],把已知的條件代入可證得結論成立.
(II)兩次使用二倍角公式,即可求得結果.
(III)利用 sin36°=cos54°,可得 2sin18°cos18°=4cos318°-3cos18°,解方程求出2sin18°的值.
解答:解:(I)證明:∵sin3x=-cos(
2
-3x)=-cos[3(
π
2
-x)]=-[4cos3(
π
2
-x)-3cos(
π
2
-x)]

=-(4sin3x-3sinx)=3sinx-4sin3x,故等式成立.
(II)cos4x=cos(2•2x)=2cos22x-1=2(2cos2x-1)2-1=2(4cos4x-4cos2x+1)-1
=8cos4x-8cos2x+1.
(III)∵sin36°=cos54°,∴2sin18°cos18°=4cos318°-3cos18°,
∴4sin218°+2sin18°-1=0,∴sin18°=
5
-1
4
點評:本題考查二倍角公式、誘導公式的應用,正確選擇公式是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

由倍角公式cos2x=2cos2x-1,可知cos2x可以表示為cosx的二次多項式.
對于cos3x,我們有
cos3x=cos(2x+x)=cos2xcosx-sin2xsinx
=(2cos2x-1)cosx-2(sinxcosx)sinx
=2cos3x-cosx-2(1-cos2x)cosx
=4cos3x-3cocs.
可見cos3x可以表示為cosx的三次多項式.
一般地,存在一個n次多項式Pn(t),使得cosnx=Pn(cosx),這些多項式Pn(t)稱為切比雪夫(P.L.Tschebyscheff)多項式.
(1)請嘗試求出P4(t),即用一個cosx的四次多項式來表示cos4x.
(2)化簡cos(60°-θ)cos(60°+θ)cosθ,并利用此結果求sin20°sin40°sin60°sin80°的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

由倍角公式cos2x=2cos2x-1,可知cos2x可以表示為cosx的二次多項式.對于cos3x,我們有
cos3x=cos(2x+x)
=cos2xcosx-sin2xsinx
=(2cos2x-1)cosx-2(sinxcosx)sinx
=2cos3x-cosx-2(1-cos2x)cosx
=4cos3x-3cosx
可見cos3x可以表示為cosx的三次多項式.一般地,存在一個n次多項式Pn(t),使得cosnx=Pn(cosx),這些多項式Pn(t)稱為切比雪夫多項式.
(I)求證:sin3x=3sinx-4sin3x;
(II)請求出P4(t),即用一個cosx的四次多項式來表示cos4x;
(III)利用結論cos3x=4cos3x-3cosx,求出sin18°的值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

由倍角公式cos2x=2cos2x-1,可知cos2x可以表示為cosx的二次多項式.對于cos3x,我們有
cos3x=cos(2x+x)
=cos2xcosx-sin2xsinx
=(2cos2x-1)cosx-2(sinxcosx)sinx
=2cos3x-cosx-2(1-cos2x)cosx
=4cos3x-3cosx
可見cos3x可以表示為cosx的三次多項式.一般地,存在一個n次多項式Pn(t),使得cosnx=Pn(cosx),這些多項式Pn(t)稱為切比雪夫多項式.
(I)求證:sin3x=3sinx-4sin3x;
(II)請求出P4(t),即用一個cosx的四次多項式來表示cos4x;
(III)利用結論cos3x=4cos3x-3cosx,求出sin18°的值.

查看答案和解析>>

科目:高中數學 來源:2010-2011學年遼寧省大連市協作體高一(下)4月月考數學試卷(文科)(解析版) 題型:解答題

由倍角公式cos2x=2cos2x-1,可知cos2x可以表示為cosx的二次多項式.對于cos3x,我們有
cos3x=cos(2x+x)
=cos2xcosx-sin2xsinx
=(2cos2x-1)cosx-2(sinxcosx)sinx
=2cos3x-cosx-2(1-cos2x)cosx
=4cos3x-3cosx
可見cos3x可以表示為cosx的三次多項式.一般地,存在一個n次多項式Pn(t),使得cosnx=Pn(cosx),這些多項式Pn(t)稱為切比雪夫多項式.
(I)求證:sin3x=3sinx-4sin3x;
(II)請求出P4(t),即用一個cosx的四次多項式來表示cos4x;
(III)利用結論cos3x=4cos3x-3cosx,求出sin18°的值.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 亚洲免费国产视频 | 欧美精品二区中文乱码字幕高清 | 国内成人精品2018免费看 | 国产裸体永久免费视频网站 | 超碰人人干 | 国产亚洲一区二区三区在线观看 | 国产中文字幕一区二区三区 | 国产乱视频网站 | 国产在线观看一区二区三区 | 91男女视频| 99国产精品99久久久久久 | www.狠狠干 | 亚洲精品国产第一综合99久久 | 国产精品久久久久蜜臀 | 精品九九 | 日韩在线视频一区 | 国产精品大全 | 亚洲国产日韩欧美 | 丁香午夜 | 中文字幕91 | 最新的黄色网址 | 一区二区三区四区在线视频 | 欧洲成人午夜免费大片 | 中文二区 | 久久久精品久久久久 | 国产精品久久久久久久7电影 | 成人av网站在线 | 日韩三区 | 亚洲国产高清在线 | 一区二区久久 | 国产一区二区久久 | 免费av大全 | 欧美成人精品一区二区男人看 | 97国产一区二区精品久久呦 | 日韩一级免费在线观看 | 美日韩三级 | 亚洲视频 欧美视频 | av在线毛片 | 国产美女在线精品免费观看网址 | 国产二区视频 | 免费av一区 |