(本題滿分12分)在四棱錐P—ABCD中,底面ABCD是a的正方形,PA⊥平面ABCD,且PA=2AB
(Ⅰ)求證:平面PAC⊥平面PBD;
(Ⅱ)求二面角B—PC—D的余弦值.
解:(Ⅰ)證明:∵PA⊥平面ABCD ∴PA⊥BD
∵ABCD為正方形 ∴AC⊥BD
∴BD⊥平面PAC又BD在平面BPD內,
∴平面PAC⊥平面BPD .。。。。。。。。。。。。。。。。 6分
(Ⅱ)解法一:在平面BCP內作BN⊥PC垂足為N,連DN,
∵Rt△PBC≌Rt△PDC,由BN⊥PC得DN⊥PC;
∴∠BND為二面角B—PC—D的平面角,
在△BND中,BN=DN=,BD=
∴cos∠BND =。。。。。。。。。。。。。。。 12分
解法二:以A為原點,AB、AD、AP所在直線分別為x軸、y軸、z軸建立空間坐標系如圖,
在平面BCP內作BN⊥PC垂足為N連DN,
∵Rt△PBC≌Rt△PDC,由BN⊥PC得DN⊥PC;
∴∠BND為二面角B—PC—D的平面角
設
10分
12分
解法三:以A為原點,AB、AD、AP所在直線分別為x軸、y軸、z軸建立如圖空間坐標系,作AM⊥PB于M、AN⊥PD于N,易證AM⊥平面PBC,AN⊥平面PDC,
設
∵二面角B—PC—D的平面角與∠MAN互補
∴二面角B—PC—D的余弦值為 …………………………. 12分
【解析】略
科目:高中數學 來源: 題型:
(本題滿分12分)
在△ABC中,角A、B、C的對邊分別為a、b、c,且.
??????(Ⅰ)求角A的大小;??????(Ⅱ)若,求△ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
(本題滿分12分)
在平面直角坐標系中,已知A1(-3,0),A2(3,0),P(x,y),M(,0),若實數λ使向量
,λ
,
滿足λ2·(
)2=
·
。
(1)求點P的軌跡方程,并判斷P點的軌跡是怎樣的曲線;
(2)當λ=時,過點A1且斜率為1的直線與此時(1)中的曲線相交的另一點為B,能否在直線x=-9上找一點C,使ΔA1BC為正三角形(請說明理由)。
查看答案和解析>>
科目:高中數學 來源:2012-2013學年遼寧沈陽二中等重點中學協作體高三領航高考預測(二)文數學卷(解析版) 題型:解答題
(本題滿分12分)在中
分別為A,B,C所對的邊,
且
(1)判斷的形狀;
(2)若,求
的取值范圍
查看答案和解析>>
科目:高中數學 來源:2013屆云南大理州賓川四中高二下學期4月考試文科數學試卷(解析版) 題型:解答題
(本題滿分12分)在各項為正的數列中,數列的前n項和
滿足
(1)求;(2) 由(1)猜想數列
的通項公式;(3) 求
查看答案和解析>>
科目:高中數學 來源:2013屆云南省高二上學期期末考試理科數學 題型:解答題
(本題滿分12分)在邊長為2的正方體中,E是BC的中點,F是
的中點
(Ⅰ)求證:CF∥平面
(Ⅱ)求二面角的平面角的余弦值。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com