日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

設函數f(x)=-x2+4ax-3a2
(1)當a=1,x∈[-3,3]時,求函數f(x)的取值范圍;
(2)若0<a<1,x∈[1-a,1+a]時,恒有-a≤f(x)≤a成立,試確定a的取值范圍.

解:(1)當a=1時,f(x)=-x2+4x-3=-(x-2)2+1
∵f(x)在[-3,2]上單調遞增,在[2,3]上單調遞減
∴當x=2時,函數有最大值1,當x=-3時,函數有最小值-24
∴-24≤f(x)≤1
(2)∵0<a<1,二次函數的對稱軸x=2a,則2a<1+a
①當2a<1-a即0<a<時,
f(x)min=f(1+a)=2a-1,f(x)max=f(1-a)=-8a2+6a-1
此時,,此時a不存在
②當2a>1-a,即1>a時,二次函數的對稱軸x=2a∈[1-a,1+a]
根據二次函數的性質可知,當x=2a時,函數有最大值f(2a)=a2
f(x)min=min{f(1-a),f(1+a)}
若f(x)min=f(1-a)=-8a2+6a-1
此時有,解可得
若f(x)min=f(1+a)=2a-1
此時有,解可得
綜上可得,
分析:(1)當a=1時,根據二次函數的性質可知f(x)在[-3,2]上單調遞增,在[2,3]上單調遞減,結合單調性可求函數的最大值與最小值,即可求解
(2)由題意可得,二次函數的對稱軸x=2a,[1-a,1+a],根據二次函數的性質可知,當x=2a時,函數有最大值f(2a)=a2,f(x)min=min{f(1-a),f(1+a)},結合1-a,與1+a距離對稱軸的遠近可求函數的最小值,而由-a≤f(x)≤a成立可得,f(x)max≤a,f(x)min≥-a,可求
點評:本題主要了一元二次不等式恒成立的問題,解題的關鍵是利用了二次函數圖象的特點數形結合解決問題的.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;
(3)對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)的定義域為A,若存在非零實數t,使得對于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),則稱f(x)為C上的t低調函數.如果定義域為[0,+∞)的函數f(x)=-|x-m2|+m2,且 f(x)為[0,+∞)上的10低調函數,那么實數m的取值范圍是(  )
A、[-5,5]
B、[-
5
5
]
C、[-
10
10
]
D、[-
5
2
5
2
]

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•深圳一模)已知函數f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數,且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)是定義在R上的偶函數,且f(x+2)=f(x)恒成立;當x∈[0,1]時,f(x)=x3-4x+3.有下列命題:
f(-
3
4
) <f(
15
2
)

②當x∈[-1,0]時f(x)=x3+4x+3;
③f(x)(x≥0)的圖象與x軸的交點的橫坐標由小到大構成一個無窮等差數列;
④關于x的方程f(x)=|x|在x∈[-3,4]上有7個不同的根.
其中真命題的個數為(  )

查看答案和解析>>

科目:高中數學 來源:徐州模擬 題型:解答題

設函數f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;
(3)對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 99国产精品99久久久久久 | 国产小视频免费观看 | 亚洲高清免费视频 | 免费观看成人性生生活片 | 欧美成人影院 | 天天干天天操天天爽 | 一区二区三区在线观看视频 | 午夜精品一区二区三区在线观看 | 青青草视频网 | 免费视频一区 | 欧美高清一级片 | 国产精品久久久久久久久久三级 | 欧美18免费视频 | 天天操天天干天天 | 国产精品自拍视频 | 一本大道综合伊人精品热热 | 国产欧美在线观看 | 日本特黄特色aaa大片免费 | 日韩有码一区 | 免费草逼视频 | 日韩福利视频 | 国产精品99久久久久久宅男 | 欧美成人精品一区二区男人看 | 午夜在线电影 | 欧美性福 | 色网站在线| 日本高清www | 亚洲婷婷综合网 | 亚洲黄色小视频 | 国产精品久久一区 | 欧美日韩综合精品 | 国产乱老熟视频网88av | 亚洲毛片 | 黑人巨大精品欧美一区二区免费 | 蜜臀av性久久久久蜜臀aⅴ流畅 | 色一情一乱一伦一区二区三区 | 日韩av不卡在线 | 色黄网站 | 91香蕉| 久草成人网 | 一本久久a久久精品亚洲 |