【題目】某花店每天以每枝元的價格從農場購進若干枝玫瑰花,然后以每枝
元的價格出售,如果當天賣不完,剩下的玫瑰花作垃圾處理.
(1)若花店一天購進枝玫瑰花,求當天的利潤
(單位:元)關于當天需求量
(單位:枝,
)的函數解析式.
(2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:
以100天記錄的各需求量的頻率作為各需求量發生的概率.
(i)若花店一天購進枝玫瑰花,
表示當天的利潤(單位:元),求
的分布列,數學期望及方差;
(ii)若花店計劃一天購進16枝或17枝玫瑰花,你認為應購進16枝還是17枝?請說明理由.
科目:高中數學 來源: 題型:
【題目】數學中有很多形狀優美、寓意美好的曲線,曲線就是其中之一,給出下列四個結論,其中正確的選項是( )
A.曲線C關于坐標原點對稱
B.曲線C恰好經過6個整點(即橫、縱坐標均為整數的點)
C.曲線C上任意一點到原點的距離最小值為1
D.曲線C所圍成的區域的面積小于4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,用四種不同顏色給圖中的A,B,C,D,E,F六個點涂色,要求每個點涂一種顏色,且圖中每條線段的兩個端點涂不同顏色,則不同的涂色方法用
A.288種B.264種C.240種D.168種
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】拋物線有如下光學性質:由其焦點射出的光線經拋物線反射后,沿平行于拋物線對稱軸的方向射出.現有拋物線,如圖一平行于
軸的光線射向拋物線,經兩次反射后沿平行
軸方向射出,若兩平行光線間的最小距離為4,則該拋物線的方程為__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,多面體 ABCDEF中,四邊形ABCD是邊長為2的菱形,且平面ABCD⊥平面DCE.AF∥DE,且AF=DE=2,BF=2
.
(1)求證:AC⊥BE;
(2)若點F到平面DCE的距離為,求直線EC與平面BDE所成角的正弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com