【題目】已知橢圓E:(
)的焦距為
,直線
:
與x軸的交點為G,過點
且不與x軸重合的直線
交E于點A,B.當
垂直x軸時,
的面積為
.
(1)求E的方程;
(2)若,垂足為C,直線
交x軸于點D,證明:
.
科目:高中數學 來源: 題型:
【題目】第18屆國際籃聯籃球世界杯(世界男子籃球錦標賽更名為籃球世界杯后的第二屆世界杯)于2019年8月31日至9月15日在中國的北京、廣州、南京、上海、武漢、深圳、佛山、東莞八座城市舉行.中國隊12名球員在第一場和第二場得分的莖葉圖如圖所示,則下列說法正確的是( )
A.第一場得分的中位數為B.第二場得分的平均數為
C.第一場得分的極差大于第二場得分的極差D.第一場與第二場得分的眾數相等
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2x-1,(a∈R),若對任意x1∈[1,+∞),總存在x2∈R,使f(x1)=g(x2),則實數a的取值范圍是()
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線
的參數方程
(
為參數),直線
的參數方程
(
為參數).
(1)求曲線在直角坐標系中的普通方程;
(2)以坐標原點為極點,
軸的正半軸為極軸建立極坐標系,當曲線
截直線
所得線段的中點極坐標為
時,求直線
的傾斜角.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線
的參數方程
(
為參數),直線
的參數方程
(
為參數).
(1)求曲線在直角坐標系中的普通方程;
(2)以坐標原點為極點,
軸的正半軸為極軸建立極坐標系,當曲線
截直線
所得線段的中點極坐標為
時,求直線
的傾斜角.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義:若函數在區間
上的值域為
,則稱區間
是函數
的“完美區間”,另外,定義區間
的“復區間長度”為
,已知函數
,則( )
A.是
的一個“完美區間”
B.是
的一個“完美區間”
C.的所有“完美區間”的“復區間長度”的和為
D.的所有“完美區間”的“復區間長度”的和為
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義:若函數在區間
上的值域為
,則稱區間
是函數
的“完美區間”,另外,定義區間
的“復區間長度”為
,已知函數
,則( )
A.是
的一個“完美區間”
B.是
的一個“完美區間”
C.的所有“完美區間”的“復區間長度”的和為
D.的所有“完美區間”的“復區間長度”的和為
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校倡導為特困學生募捐,要求在自動購水機處每購買一瓶礦泉水,便自覺向捐款箱中至少投入一元錢.現統計了連續5天的售出礦泉水箱數和收入情況,列表如下:
售出水量 | 7 | 6 | 6 | 5 | 6 |
收入 | 165 | 142 | 148 | 125 | 150 |
學校計劃將捐款以獎學金的形式獎勵給品學兼優的特困生,規定:特困生綜合考核前20名,獲一等獎學金500元;綜合考核21-50名,獲二等獎學金300元;綜合考核50名以后的不獲得獎學金.
(1)若與
成線性相關,則某天售出9箱水時,預計收入為多少元?
(2)假設甲、乙、丙三名學生均獲獎,且各自獲一等獎和二等獎的可能性相同,求三人獲得獎學金之和不超過1000元的概率.
附:回歸方程,其中
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某單位為促進職工業務技能提升,對該單位120名職工進行一次業務技能測試,測試項目共5項.現從中隨機抽取了10名職工的測試結果,將它們編號后得到它們的統計結果如下表(表1)所示(“√”表示測試合格,“×”表示測試不合格).
表1:
編號\測試項目 | 1 | 2 | 3 | 4 | 5 |
1 | × | √ | √ | √ | √ |
2 | √ | √ | √ | √ | × |
3 | √ | √ | √ | √ | × |
4 | √ | √ | √ | × | × |
5 | √ | √ | √ | √ | √ |
6 | √ | × | × | √ | × |
7 | × | √ | √ | √ | × |
8 | √ | × | × | × | × |
9 | √ | √ | × | × | × |
10 | √ | √ | √ | √ | × |
規定:每項測試合格得5分,不合格得0分.
(1)以抽取的這10名職工合格項的項數的頻率代替每名職工合格項的項數的概率.
①設抽取的這10名職工中,每名職工測試合格的項數為,根據上面的測試結果統計表,列出
的分布列,并估計這120名職工的平均得分;
②假設各名職工的各項測試結果相互獨立,某科室有5名職工,求這5名職工中至少有4人得分不少于20分的概率;
(2)已知在測試中,測試難度的計算公式為,其中
為第
項測試難度,
為第
項合格的人數,
為參加測試的總人數.已知抽取的這10名職工每項測試合格人數及相應的實測難度如下表(表2):
表2:
測試項目 | 1 | 2 | 3 | 4 | 5 |
實測合格人數 | 8 | 8 | 7 | 7 | 2 |
定義統計量,其中
為第
項的實測難度,
為第
項的預測難度(
).規定:若
,則稱該次測試的難度預測合理,否則為不合理,測試前,預估了每個預測項目的難度,如下表(表3)所示:
表3:
測試項目 | 1 | 2 | 3 | 4 | 5 |
預測前預估難度 | 0.9 | 0.8 | 0.7 | 0.6 | 0.4 |
判斷本次測試的難度預估是否合理.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com