【題目】從4名男生,3名女生中選出三名代表,
(1)不同的選法共有多少種?
(2)至少有一名女生的不同的選法共有多少種?
(3)代表中男、女生都有的不同的選法共有多少種?
【答案】
(1)解:根據題意,共有7人,要從中選出3名代表,共有選法 種;
(2)解:至少有一名女生包括3種情況,
①、有1名女生、2名男生,有C31C42種情況,
②、有2名女生、1名男生,有C32C41種情況,
③、3名全是女生,有C33種情況,
則至少有一名女生的不同選法共有 種
(3)解:由(1)可得,從7人中選出3人的情況有C73種,
選出的3人都是男生的情況有C43種,
選出的3人是女生的情況有C33種,
則選出的3人中,男、女生都要有的不同的選法共有 種
【解析】(1)根據題意,要從7人中選出3名代表,由組合數公式可得答案;(2)至少有一名女生包括3種情況,①、有1名女生、2名男生,②、有2名女生、1名男生,③、3名全是女生,由組合數公式可得每種情況的選法數目,由分類計數原理計算可得答案;(3)由(1)可得,從7人中選出3人的情況有C73種,從中排除選出的3人都是男生的情況與選出的3人是女生的情況,即可得答案.
科目:高中數學 來源: 題型:
【題目】設函數f(x)=ln(1+x)﹣ln(1﹣x),則f(x)是( )
A.奇函數,且在(0,1)上是增函數
B.奇函數,且在(0,1)上是減函數
C.偶函數,且在(0,1)上是增函數
D.偶函數,且在(0,1)上是減函數
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列不等關系正確的是( )
A.( )
<34<(
)﹣2
B.( )﹣2<(
)
<34
C.(2.5)0<( )2.5<22.5
D.( )2.5<(2.5)0<22.5
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若實數滿足
,則稱
為函數
的不動點.
(1)求函數的不動點;
(2)設函數,其中
為實數.
① 若時,存在一個實數
,使得
既是
的不動點,又是
的不動點(
是函數
的導函數),求實數
的取值范圍;
② 令,若存在實數
,使
,
,
,
成各項都為正數的等比數列,求證:函數
存在不動點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)= ,且f(﹣2)=3,f(﹣1)=f(1).
( I)求f(x)的解析式;
( II)畫出f(x)的圖象(不寫過程)并求其值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,
是拋物線
的焦點,
是拋物線
上的任意一點,當
位于第一象限內時,
外接圓的圓心到拋物線
準線的距離為
.
(1)求拋物線的方程;
(2)過的直線
交拋物線
于
兩點,且
,點
為
軸上一點,且
,求點
的橫坐標
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= 的圖象過點A(0,
),B(3,3)
(1)求函數f(x)的解析式;
(2)判斷函數f(x)在(2,+∞)上的單調性,并用單調性的定義加以證明;
(3)若m,n∈(2,+∞)且函數f(x)在[m,n]上的值域為[1,3],求m+n的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com