如圖,橢圓的離心率為
,
軸被曲線
截得的線段長等于
的短軸長。
與
軸的交點為
,過坐標原點
的直線
與
相交于點
,直線
分別與
相交于點
。
(1)求、
的方程;
(2)求證:。
(3)記的面積分別為
,若
,求
的取值范圍。
科目:高中數學 來源: 題型:解答題
如圖,直線,拋物線
,已知點
在拋物線
上,且拋物線
上的點到直線
的距離的最小值為
.
(1)求直線及拋物線
的方程;
(2)過點的任一直線(不經過點
)與拋物線
交于
、
兩點,直線
與直線
相交于點
,記直線
,
,
的斜率分別為
,
,
.問:是否存在實數
,使得
?若存在,試求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知中心在坐標原點O的橢圓C經過點A(2,3),且點F(2,0)為其右焦點.
(1)求橢圓C的方程;
(2)是否存在平行于OA的直線l,使得直線l與橢圓C有公共點,且直線OA與l的距離等于4?若存在,求出直線l的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系xOy中,已知對于任意實數k,直線(k+1)x+(k-
)y-(3k+
)=0恒過定點F.設橢圓C的中心在原點,一個焦點為F,且橢圓C上的點到F的最大距離為2+
.
(1)求橢圓C的方程;
(2)設(m,n)是橢圓C上的任意一點,圓O:x2+y2=r2(r>0)與橢圓C有4個相異公共點,試分別判斷圓O與直線l1:mx+ny=1和l2:mx+ny=4的位置關系.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知一條曲線在
軸右側,
上每一點到點
的距離減去它到
軸距離的差都是1.
(1)求曲線的方程;
(2)設直線交曲線
于
兩點,線段
的中點為
,求直線
的一般式方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C:=1(a>b>0)上任一點P到兩個焦點的距離的和為2
,P與橢圓長軸兩頂點連線的斜率之積為-
.設直線l過橢圓C的右焦點F,交橢圓C于兩點A(x1,y1),B(x2,y2).
(1)若=
(O為坐標原點),求|y1-y2|的值;
(2)當直線l與兩坐標軸都不垂直時,在x軸上是否總存在點Q,使得直線QA,QB的傾斜角互為補角?若存在,求出點Q坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓=1上任一點P,由點P向x軸作垂線PQ,垂足為Q,設點M在PQ上,且
=2
,點M的軌跡為C.
(1)求曲線C的方程;
(2)過點D(0,-2)作直線l與曲線C交于A、B兩點,設N是過點且平行于x軸的直線上一動點,且滿足
=
+
(O為原點),且四邊形OANB為矩形,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,焦距為的橢圓
的兩個頂點分別為
和
,且
與n
,
共線.
(1)求橢圓的標準方程;
(2)若直線與橢圓
有兩個不同的交
點和
,且原點
總在以
為直徑的圓的內部,求實數
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com