思路分析:由于a4+b4≥2a2b2,說明了運用均值不等式,可以找到左式與中間式的關系.同樣地a2b2+b2c2≥2ab2c,而ab2c就是右式中的一項.
證明:∵a4+b4≥2a2b2,b4+c4≥2b2c2,c4+a4≥2c2a2,
∴2(a4+b4+c4)≥2(a2b2+b2c2+c2a2),
即a4+b4+c4≥a2b2+b2c2+c2a2.
又∵a2b2+b2c2≥2ab2c,b2c2+c2a2≥2bc2a,c2a2+a2b2≥2a2bc,
∴2(a2b2+b2c2+c2a2)≥2(ab2c+bc2a+a2bc),
即a2b2+b2c2+c2a2≥abc(a+b+c).
以上各式當且僅當a=b=c時取等號.
科目:高中數學 來源: 題型:
x2 |
a |
y2 |
b |
(x+y)2 |
a+b |
1 |
2x |
9 |
1-2x |
1 |
2 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com