( 本題滿分14分)已知函數(shù)對任意實數(shù)均有
,其中常數(shù)k為負數(shù),且
在區(qū)間
上有表達式
(1)求的值;
(2)寫出在
上的表達式,并討論函數(shù)
在
上的單調(diào)性.
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)我們把同時滿足下列兩個性質(zhì)的函數(shù)稱為“和諧函數(shù)” :
①函數(shù)在整個定義域上是單調(diào)增函數(shù)或單調(diào)減函數(shù);
②在函數(shù)的定義域內(nèi)存在區(qū)間,使得函數(shù)在區(qū)間
上的值域為
.
⑴已知冪函數(shù)的圖像經(jīng)過點
,判斷
是否是和諧函數(shù)?
⑵判斷函數(shù)是否是和諧函數(shù)?
⑶若函數(shù)是和諧函數(shù),求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)在點
處的切線方程為
.
(I)求,
的值;
(II)對函數(shù)定義域內(nèi)的任一個實數(shù)
,
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)已知是定義在[-1,1]上的奇函數(shù),當
,且
時有
.
(1)判斷函數(shù)的單調(diào)性,并給予證明;
(2)若對所有
恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知二次函數(shù)的最小值為1,且
.
(1)求的解析式;
(2)若在區(qū)間
上不單調(diào),求實數(shù)
的取值范圍;
(3)在區(qū)間上,
的圖象恒在
的圖象上方,試確定實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)。
(Ⅰ)若在定義域內(nèi)存在,使不等式
能成立,求實數(shù)
的最小值;
(Ⅱ)若函數(shù)在區(qū)間
上恰有兩個不同的零點,求實數(shù)
的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com