【題目】已知函數(shù).
當(dāng)
時,
恒成立,求
的值;
若
恒成立,求
的最小值.
【答案】(1);(2)
.
【解析】
(1)求出函數(shù)的導(dǎo)數(shù),通過討論a的范圍,求出函數(shù)的單調(diào)區(qū)間,求出函數(shù)的最大值,從而求出a的值即可;
(2)把f(x)≤0恒成立,轉(zhuǎn)化為lnx≤ax+b恒成立,當(dāng)a≤0時顯然不滿足題意;當(dāng)a>0時,要使lnx≤ax+b對任意x>0恒成立,需要直線y=ax+b與曲線y=lnx相切,設(shè)出切點坐標(biāo),把a,b用切點橫坐標(biāo)表示,得到a+blnx0﹣1(x0>0),構(gòu)造函數(shù)g(x)
lnx﹣1,利用導(dǎo)數(shù)求其最小值得答案.
解:(1)由,得
,則
.
∴.
若,則
,
在
上遞增.
又,∴.當(dāng)
時,
不符合題意.
② 若,則當(dāng)
時,
,
遞增;當(dāng)
時,
,
遞減.
∴當(dāng)時,
.
欲使恒成立,則需
記,則
.
∴當(dāng)時,
,
遞減;當(dāng)
時,
,
遞增.
∴當(dāng)時,
綜上所述,滿足題意的.
(2)由(1)知,欲使恒成立,則
.
而恒成立
恒成立
函數(shù)
的圖象不在函數(shù)
圖象的上方,
又需使得的值最小,則需使直線
與曲線
的圖象相切.
設(shè)切點為,則切線方程為
,即
..
∴ .
令,則
.
∴當(dāng)時,
,
遞減;當(dāng)
時,
,
遞增.
∴.
故的最小值為0.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx,其中a>0.曲線y=f(x)在點(1,f(1))處的切線與直線y=x+1垂直.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)f(x)在區(qū)間[1,e]上的極值和最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點的坐標(biāo)分別為
,三角形
的兩條邊
所在直線的斜率之積是
.
(I)求點的軌跡方程;
(II)設(shè)直線方程為
,直線
方程為
,直線
交
于
,點
關(guān)于
軸對稱,直線
與
軸相交于點
,求
面積
關(guān)于
的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為(t為參數(shù),0).以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為
.
(Ⅰ)寫出曲線C的直角坐標(biāo)方程;
(Ⅱ)若直線l與曲線C交于A,B兩點,且AB的長度為2,求直線l的普通方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究“教學(xué)方式”對教學(xué)質(zhì)量的影響,某高中老師分別用兩種不同的教學(xué)方式對入學(xué)數(shù)學(xué)平均分?jǐn)?shù)和優(yōu)秀率都相同的甲、乙兩個高一新班進(jìn)行教學(xué)(勤奮程度和自覺性都一樣).以下莖葉圖為甲、乙兩班(每班均為20人)學(xué)生的數(shù)學(xué)期末考試成績.
甲班 | 乙班 | 合計 | |
優(yōu)秀 | |||
不優(yōu)秀 | |||
合計 |
現(xiàn)從甲班數(shù)學(xué)成績不低于80分的同學(xué)中隨機抽取兩名同學(xué),求成績?yōu)?7分的同學(xué)至少有一名被抽中的概率;
(II)學(xué)校規(guī)定:成績不低于75分的為優(yōu)秀.請?zhí)顚懴旅娴?×2列聯(lián)表,并判斷有多大把握認(rèn)為“成績優(yōu)秀與教學(xué)方式有關(guān)”.
下面臨界值表供參考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | .024 | 6.635 | 7.879 | 10.828 |
(參考公式:K2=)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰梯形ABCD中,
,E,F分別為AB,CD的中點,
,M為DF中點.現(xiàn)將四邊形BEFC沿EF折起,使平面
平面AEFD,得到如圖
所示的多面體.在圖
中,
(1)證明:;
(2)求二面角E-BC-M的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)對某市工薪階層關(guān)于“樓市限購令”的態(tài)度進(jìn)行調(diào)查,隨機抽調(diào)了50人,他們月收入的頻數(shù)分布及對“樓市限購令”贊成人數(shù)如下表.
月收入(單位百元) | ||||||
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 4 | 8 | 12 | 5 | 2 | 1 |
(1)由以上統(tǒng)計數(shù)據(jù)填下面2×2列聯(lián)表,并問是否有99%的把握認(rèn)為“月收入以5500元為分界點對“樓市限購令”的態(tài)度有差異;
月收入不低于55百元的人數(shù) | 月收入低于55百元的人數(shù) | 合計 | |
贊成 | a=______________ | c=______________ | ______________ |
不贊成 | b=______________ | d=______________ | ______________ |
合計 | ______________ | ______________ | ______________ |
(2)試求從年收入位于(單位:百元)的區(qū)間段的被調(diào)查者中隨機抽取2人,恰有1位是贊成者的概率。
參考公式:,其中
.
參考值表:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)生學(xué)習(xí)的自律性很重要.某學(xué)校對自律性與學(xué)生成績是否有關(guān)進(jìn)行了調(diào)研,從該校學(xué)生中隨機抽取了100名學(xué)生,通過調(diào)查統(tǒng)計得到列聯(lián)表的部分?jǐn)?shù)據(jù)如下表:
自律性一般 | 自律性強 | 合計 | |
成績優(yōu)秀 | 40 | ||
成績一般 | 20 | ||
合計 | 50 | 100 |
(1)補全列聯(lián)表中的數(shù)據(jù);
(2)判斷是否有的把握認(rèn)為學(xué)生的自律性與學(xué)生成績有關(guān).
參考公式及數(shù)據(jù):.
0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓(
)的左、右焦點為
,右頂點為
,上頂點為
.已知
.
(1)求橢圓的離心率;
(2)設(shè)為橢圓上異于其頂點的一點,以線段
為直徑的圓經(jīng)過點
,經(jīng)過原點
的直線
與該圓相切,求直線
的斜率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com