【題目】三棱錐中,
, △
是斜邊
的等腰直角三角形, 以下結(jié)論中: ① 異面直線
與
所成的角為
;② 直線
平面
;③ 面
面
;④ 點(diǎn)
到平面
的距離是
. 其中正確結(jié)論的序號(hào)是 ____________________ .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量,
.設(shè)
(t為實(shí)數(shù)).
(Ⅰ)若,求當(dāng)
取最小值時(shí)實(shí)數(shù)t的值;
(Ⅱ)若⊥
,問:是否存在實(shí)數(shù)t,使得向量
-
和向量
的夾角為
,若存在,請求出t;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中
為自然對數(shù)的底數(shù),
).
(1)若僅有一個(gè)極值點(diǎn),求
的取值范圍;
(2)證明:當(dāng)時(shí),
有兩個(gè)零點(diǎn)
,且
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知全集U=R,A={x|x2﹣2x﹣3≤0},B={x|2≤x<5},C={x|x>a}.
(1)求A∩(UB);
(2)若A∪C=C,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=a2x+2ax-1(a>0且a≠1),當(dāng)自變量x∈[-1,1]時(shí),函數(shù)的最大值為14.試求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C的一個(gè)焦點(diǎn)為,對應(yīng)于這個(gè)焦點(diǎn)的準(zhǔn)線方程為
(1)寫出拋物線C的方程;
(2)過F點(diǎn)的直線與曲線C交于A、B兩點(diǎn),O點(diǎn)為坐標(biāo)原點(diǎn),求△AOB重心G的軌跡方程;
(3)點(diǎn)P是拋物線C上的動(dòng)點(diǎn),過點(diǎn)P作圓的切線,切點(diǎn)分別是M,N.當(dāng)P點(diǎn)在何處時(shí),|MN|的值最小?求出|MN|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線
的參數(shù)方程是
(
為參數(shù)),以
為極點(diǎn),
軸的正半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
,且直線
與曲線
交于
兩點(diǎn).
(Ⅰ)求曲線的直角坐標(biāo)方程及直線
恒過的定點(diǎn)
的坐標(biāo);
(Ⅱ)在(Ⅰ)的條件下,若,求直線
的普通方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形為菱形,四邊形
為平行四邊形,設(shè)
與
相交于點(diǎn)
,
.
(1)證明:平面平面
;
(2)若,求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】通過研究學(xué)生的學(xué)習(xí)行為,專家發(fā)現(xiàn),學(xué)生的注意力著老師講課時(shí)間的變化而變化,講課開始時(shí),學(xué)生的興趣激增;中間有一段時(shí)間,學(xué)生的興趣保持較理想的狀態(tài),隨后學(xué)生的注意力開始分散,設(shè)f(t)表示學(xué)生注意力隨時(shí)間t(分鐘)的變化規(guī)律\left(f(t)越大,表明學(xué)生注意力越集中),經(jīng)過實(shí)驗(yàn)分析得知:
(1)講課開始后多少分鐘,學(xué)生的注意力最集中?能持續(xù)多少分鐘?
(2)講課開始后5分鐘與講課開始后25分鐘比較,何時(shí)學(xué)生的注意力更集中?
(3)一道數(shù)學(xué)難題,需要講解24分鐘,并且要求學(xué)生的注意力至少達(dá)到180,那么經(jīng)過適當(dāng)安排,教師能否在學(xué)生達(dá)到所需的狀態(tài)下講授完這道題目?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com