【題目】設A,B,C,D為平面內的四點,且A(1,3),B(2,–2),C(4,1).
(1)若,求D點的坐標;
(2)設向量,
,若k
–
與
+3
平行,求實數
的值.
【答案】(1)D(5,–4);(2)k=–.
【解析】
(1)設D(x,y),
∵A,B,C,D為平面內的四點,且A(1,3),B(2,–2),C(4,1).如圖,
∴由,得(2,–2)–(1,3)=(x,y)–(4,1),
即(1,–5)=(x–4,y–1),
∴,解得x=5,y=–4,∴D(5,–4).
(2)∵=(1,–5),
=(2,3),
∴k–
=k(1,–5)–(2,3)=(k,–5k)–(2,3)=(k–2,–5k–3),
又+3
=(1,–5)+3(2,3)=(1,–5)+(6,9)=(7,4),
且k–
與
+3
平行,
∴7(–5k–3)–4(k–2)=0,解得k=–.
∴實數k的值為–.
科目:高中數學 來源: 題型:
【題目】某市有一特色酒店由一些完全相同的帳篷構成.每座帳篷的體積為立方米,且分上下兩層,其中上層是半徑為
(單位:米)的半球體,下層是半徑為
米,高為
米的圓柱體(如圖).經測算,上層半球體部分每平方米建造費用為2千元,下方圓柱體的側面、隔層和地面三個部分平均每平方米建造費用為3千元,設每座帳篷的建造費用為
千元.
參考公式:球的體積,球的表面積
,其中
為球的半徑.
(1)求關于
的函數解析式,并指出該函數的定義域;
(2)當半徑為何值時,每座帳篷的建造費用最小,并求出最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某廠每月生產一種投影儀的固定成本為萬元,但每生產
臺,需要加可變成本(即另增加投入)
萬元,市場對此產品的月需求量為
臺,銷售的收入函數為
(萬元)
且
,其中
是產品售出的數量(單位:百臺).
(1)求月銷售利潤(萬元)關于月產量
(百臺)的函數解析式;
(2)當月產量為多少時,銷售利潤可達到最大?最大利潤為多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】三角形面積為S=(a+b+c)r,a,b,c為三角形三邊長,r為三角形內切圓半徑,利用類比推理,可以得出四面體的體積為 ( )
A. V=abc B. V=
Sh
C. V=(ab+bc+ac)·h(h為四面體的高) D. V=
(S1+S2+S3+S4)·r(其中S1,S2,S3,S4分別為四面體四個面的面積,r為四面體內切球的半徑,設四面體的內切球的球心為O,則球心O到四個面的距離都是r)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知橢圓
的離心率為
,
,
分別為橢圓的上頂點和右焦點,
的面積為
,直線
與橢圓交于另一個點
,線段
的中點為
.
(1)求直線的斜率;
(2)設平行于的直線
與橢圓交于不同的兩點
,
,且與直線
交于點
,求證:存在常數
,使得
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某高校共有學生15 000人,其中男生10 500人,女生4500人.為調查該校學生每周平均體育運動時間的情況,采用分層抽樣的方法,收集300位學生每周平均體育運動時間的樣本數據(單位:小時).
(1)應收集多少位女生的樣本數據?
(2)根據這300個樣本數據,得到學生每周平均體育運動時間的頻率分布直方圖(如圖所示),其中樣本數據的分組區間為:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估計該校學生每周平均體育運動時間超過4小時的概率.
(3)在樣本數據中,有60位女生的每周平均體育運動時間超過4小時,請完成每周平均體育運動時間與性別列聯表,并判斷是否有95%的把握認為“該校學生的每周平均體育運動時間與性別有關”.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“搜索指數”是網民通過搜索引擎,以每天搜索關鍵詞的次數為基礎所得到的統計指標.“搜索指數”越大,表示網民對該關鍵詞的搜索次數越多,對該關鍵詞相關的信息關注度也越高.下圖是2017年9月到2018年2月這半年中,某個關鍵詞的搜索指數變化的走勢圖.
根據該走勢圖,下列結論正確的是( )
A. 這半年中,網民對該關鍵詞相關的信息關注度呈周期性變化
B. 這半年中,網民對該關鍵詞相關的信息關注度不斷減弱
C. 從網民對該關鍵詞的搜索指數來看,去年10月份的方差小于11月份的方差
D. 從網民對該關鍵詞的搜索指數來看,去年12月份的平均值大于今年1月份的平均值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢園C: +
=1(a>b>0)的左、右焦點分別為F1,F2.且橢圓C過點(
,-
),離心率e=
;點P在橢圓C 上,延長PF1與橢圓C交于點Q,點R是PF2中點.
(I )求橢圓C的方程;
(II )若O是坐標原點,記△QF1O與△PF1R的面積之和為S,求S的最大值。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com