動圓M過定點A(-,0),且與定圓A´:(x-
)2+y2=12相切.
(1)求動圓圓心M的軌跡C的方程;
(2)過點P(0,2)的直線l與軌跡C交于不同的兩點E、F,求的取值范圍.
(1)
(2)
解析試題分析:解:(1)A´(,0),依題意有|MA´|+
=2
1分
|MA´|+|MA|=2
>2
3分
∴點M的軌跡是以A´、A為焦點,2為長軸上的橢圓, 4分
∵a=,c=
∴b2=1. 5分
因此點M的軌跡方程為 6分
(2)設l的方程為x=k(y-2)代入,消去x得:
(k2+3)y2-4k2y+4k2-3=0 8分
由△>0得16k4-(4k2-3)(k2+3)>0 0≤k2<1 9分
設E(x1,y1),F(x2,y2),則y1+y2=,y1y2=
10分
又=(x1,y1-2),
=(x2,y2-2)
∴·
=x1x2+(y1-2)(y2-2)=k(y1-2)·k (y2-2) +(y1-2)(y2-2)=(1+k2)
=
12分
∵0≤k2<1 ∴3≤k2+3<4 13分
∴·
∈
14分
考點:向量的數量積以及直線與橢圓的位置關系
點評:主要是考查了橢圓方程,直線與橢圓的位置關系的運用,屬于基礎題。
科目:高中數學 來源: 題型:解答題
已知雙曲線C:(a>0,b>0)的左、右焦點分別為
、
,離心率為3,直線y=2與C的兩個交點間的距離為
.
(Ⅰ)求a,b;
(Ⅱ)設過的直線l與C的左、右兩支分別交于A、B兩點,且
,證明:
、
、
成等比數列.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知中心在原點的橢圓C:的一個焦點為
,
為橢圓C上一點,
的面積為
.
(1)求橢圓C的方程;
(2)是否存在平行于OM的直線,使得直線
與橢圓C相交于A,B兩點,且以線段AB為直徑的圓恰好經過原點?若存在,求出直線
的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓和圓
:
,過橢圓上一點P引圓O的兩條切線,切點分別為A,B.
(1)(ⅰ)若圓O過橢圓的兩個焦點,求橢圓的離心率e的值;
(ⅱ)若橢圓上存在點P,使得,求橢圓離心率e的取值范圍;
(2)設直線AB與x軸、y軸分別交于點M,N,問當點P在橢圓上運動時,是否為定值?請證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系中,以坐標原點為幾點,
軸的正半軸為極軸建立極坐標系.已知直線
上兩點
的極坐標分別為
,圓
的參數方程
(
為參數).
(Ⅰ)設為線段
的中點,求直線
的平面直角坐標方程;
(Ⅱ)判斷直線與圓
的位置關系.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知動點到點
的距離與到直線
的距離之比為定值
,記
的軌跡為
.
(1)求的方程,并畫出
的簡圖;
(2)點是圓
上第一象限內的任意一點,過
作圓的切線交軌跡
于
,
兩點.
(i)證明:;
(ii)求的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線的焦點為F2,點F1與F2關于坐標原點對稱,直線m垂直于
軸(垂足為T),與拋物線交于不同的兩點P、Q,且
.
(Ⅰ)求點T的橫坐標;
(Ⅱ)若橢圓C以F1,F2為焦點,且F1,F2及橢圓短軸的一個端點圍成的三角形面積為1.
① 求橢圓C的標準方程;
② 過點F2作直線l與橢圓C交于A,B兩點,設,若
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com